| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnmulcl |
|
| 2 |
|
nncn |
|
| 3 |
2
|
3ad2ant2 |
|
| 4 |
|
simp3 |
|
| 5 |
|
nncn |
|
| 6 |
|
nnne0 |
|
| 7 |
5 6
|
jca |
|
| 8 |
7
|
3ad2ant1 |
|
| 9 |
|
nnne0 |
|
| 10 |
2 9
|
jca |
|
| 11 |
10
|
3ad2ant2 |
|
| 12 |
|
divmul24 |
|
| 13 |
3 4 8 11 12
|
syl22anc |
|
| 14 |
2 9
|
dividd |
|
| 15 |
14
|
oveq1d |
|
| 16 |
15
|
3ad2ant2 |
|
| 17 |
|
divcl |
|
| 18 |
17
|
3expb |
|
| 19 |
7 18
|
sylan2 |
|
| 20 |
19
|
ancoms |
|
| 21 |
20
|
mullidd |
|
| 22 |
21
|
3adant2 |
|
| 23 |
13 16 22
|
3eqtrd |
|
| 24 |
23
|
eleq1d |
|
| 25 |
1 24
|
imbitrid |
|
| 26 |
25
|
imp |
|