Metamath Proof Explorer


Theorem nnenom

Description: The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion nnenom ω

Proof

Step Hyp Ref Expression
1 omex ω V
2 nn0ex 0 V
3 eqid rec x V x + 1 0 ω = rec x V x + 1 0 ω
4 3 hashgf1o rec x V x + 1 0 ω : ω 1-1 onto 0
5 f1oen2g ω V 0 V rec x V x + 1 0 ω : ω 1-1 onto 0 ω 0
6 1 2 4 5 mp3an ω 0
7 nn0ennn 0
8 6 7 entr2i ω