Step |
Hyp |
Ref |
Expression |
1 |
|
nncn |
|
2 |
|
peano2cn |
|
3 |
1 2
|
syl |
|
4 |
|
2cn |
|
5 |
4
|
a1i |
|
6 |
|
2ne0 |
|
7 |
6
|
a1i |
|
8 |
3 5 7
|
divcan2d |
|
9 |
1 5 7
|
divcan2d |
|
10 |
9
|
oveq1d |
|
11 |
8 10
|
eqtr4d |
|
12 |
|
nnz |
|
13 |
|
nnz |
|
14 |
|
zneo |
|
15 |
12 13 14
|
syl2an |
|
16 |
15
|
expcom |
|
17 |
16
|
necon2bd |
|
18 |
11 17
|
syl5com |
|
19 |
|
oveq1 |
|
20 |
19
|
oveq1d |
|
21 |
20
|
eleq1d |
|
22 |
|
oveq1 |
|
23 |
22
|
eleq1d |
|
24 |
21 23
|
orbi12d |
|
25 |
|
oveq1 |
|
26 |
25
|
oveq1d |
|
27 |
26
|
eleq1d |
|
28 |
|
oveq1 |
|
29 |
28
|
eleq1d |
|
30 |
27 29
|
orbi12d |
|
31 |
|
oveq1 |
|
32 |
31
|
oveq1d |
|
33 |
32
|
eleq1d |
|
34 |
|
oveq1 |
|
35 |
34
|
eleq1d |
|
36 |
33 35
|
orbi12d |
|
37 |
|
oveq1 |
|
38 |
37
|
oveq1d |
|
39 |
38
|
eleq1d |
|
40 |
|
oveq1 |
|
41 |
40
|
eleq1d |
|
42 |
39 41
|
orbi12d |
|
43 |
|
df-2 |
|
44 |
43
|
oveq1i |
|
45 |
|
2div2e1 |
|
46 |
44 45
|
eqtr3i |
|
47 |
|
1nn |
|
48 |
46 47
|
eqeltri |
|
49 |
48
|
orci |
|
50 |
|
peano2nn |
|
51 |
|
nncn |
|
52 |
|
add1p1 |
|
53 |
52
|
oveq1d |
|
54 |
|
2cnne0 |
|
55 |
|
divdir |
|
56 |
4 54 55
|
mp3an23 |
|
57 |
45
|
oveq2i |
|
58 |
56 57
|
eqtrdi |
|
59 |
53 58
|
eqtrd |
|
60 |
51 59
|
syl |
|
61 |
60
|
eleq1d |
|
62 |
50 61
|
syl5ibr |
|
63 |
62
|
orim2d |
|
64 |
|
orcom |
|
65 |
63 64
|
syl6ib |
|
66 |
24 30 36 42 49 65
|
nnind |
|
67 |
66
|
ord |
|
68 |
18 67
|
impbid |
|