| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
eqeq2d |
|
| 3 |
2
|
cbvrexvw |
|
| 4 |
|
nnneo |
|
| 5 |
4
|
3com23 |
|
| 6 |
5
|
3expa |
|
| 7 |
6
|
nrexdv |
|
| 8 |
7
|
rexlimiva |
|
| 9 |
3 8
|
sylbi |
|
| 10 |
|
suceq |
|
| 11 |
10
|
eqeq1d |
|
| 12 |
11
|
rexbidv |
|
| 13 |
12
|
notbid |
|
| 14 |
|
eqeq1 |
|
| 15 |
14
|
rexbidv |
|
| 16 |
13 15
|
imbi12d |
|
| 17 |
|
suceq |
|
| 18 |
17
|
eqeq1d |
|
| 19 |
18
|
rexbidv |
|
| 20 |
19
|
notbid |
|
| 21 |
|
eqeq1 |
|
| 22 |
21
|
rexbidv |
|
| 23 |
20 22
|
imbi12d |
|
| 24 |
|
suceq |
|
| 25 |
24
|
eqeq1d |
|
| 26 |
25
|
rexbidv |
|
| 27 |
26
|
notbid |
|
| 28 |
|
eqeq1 |
|
| 29 |
28
|
rexbidv |
|
| 30 |
27 29
|
imbi12d |
|
| 31 |
|
suceq |
|
| 32 |
31
|
eqeq1d |
|
| 33 |
32
|
rexbidv |
|
| 34 |
33
|
notbid |
|
| 35 |
|
eqeq1 |
|
| 36 |
35
|
rexbidv |
|
| 37 |
34 36
|
imbi12d |
|
| 38 |
|
peano1 |
|
| 39 |
|
eqid |
|
| 40 |
|
oveq2 |
|
| 41 |
|
2on |
|
| 42 |
|
om0 |
|
| 43 |
41 42
|
ax-mp |
|
| 44 |
40 43
|
eqtrdi |
|
| 45 |
44
|
rspceeqv |
|
| 46 |
38 39 45
|
mp2an |
|
| 47 |
46
|
a1i |
|
| 48 |
1
|
eqeq2d |
|
| 49 |
48
|
cbvrexvw |
|
| 50 |
|
peano2 |
|
| 51 |
|
2onn |
|
| 52 |
|
nnmsuc |
|
| 53 |
51 52
|
mpan |
|
| 54 |
|
df-2o |
|
| 55 |
54
|
oveq2i |
|
| 56 |
|
nnmcl |
|
| 57 |
51 56
|
mpan |
|
| 58 |
|
1onn |
|
| 59 |
|
nnasuc |
|
| 60 |
57 58 59
|
sylancl |
|
| 61 |
55 60
|
eqtr2id |
|
| 62 |
|
nnon |
|
| 63 |
|
oa1suc |
|
| 64 |
|
suceq |
|
| 65 |
57 62 63 64
|
4syl |
|
| 66 |
53 61 65
|
3eqtr2rd |
|
| 67 |
|
oveq2 |
|
| 68 |
67
|
rspceeqv |
|
| 69 |
50 66 68
|
syl2anc |
|
| 70 |
|
suceq |
|
| 71 |
|
suceq |
|
| 72 |
70 71
|
syl |
|
| 73 |
72
|
eqeq1d |
|
| 74 |
73
|
rexbidv |
|
| 75 |
69 74
|
syl5ibrcom |
|
| 76 |
75
|
rexlimiv |
|
| 77 |
76
|
a1i |
|
| 78 |
49 77
|
biimtrid |
|
| 79 |
78
|
con3d |
|
| 80 |
|
con1 |
|
| 81 |
79 80
|
syl9 |
|
| 82 |
16 23 30 37 47 81
|
finds |
|
| 83 |
9 82
|
impbid2 |
|