Database
REAL AND COMPLEX NUMBERS
Integer sets
Positive integers (as a subset of complex numbers)
nnexALT
Metamath Proof Explorer
Description: Alternate proof of nnex , more direct, that makes use of ax-rep .
(Contributed by Mario Carneiro , 3-May-2014)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Assertion
nnexALT
⊢ ℕ ∈ V
Proof
Step
Hyp
Ref
Expression
1
df-nn
⊢ ℕ = rec ⁡ x ∈ V ⟼ x + 1 1 ω
2
rdgfun
⊢ Fun ⁡ rec ⁡ x ∈ V ⟼ x + 1 1
3
omex
⊢ ω ∈ V
4
funimaexg
⊢ Fun ⁡ rec ⁡ x ∈ V ⟼ x + 1 1 ∧ ω ∈ V → rec ⁡ x ∈ V ⟼ x + 1 1 ω ∈ V
5
2 3 4
mp2an
⊢ rec ⁡ x ∈ V ⟼ x + 1 1 ω ∈ V
6
1 5
eqeltri
⊢ ℕ ∈ V