Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
nnexpcl
Next ⟩
nn0expcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnexpcl
Description:
Closure of exponentiation of nonnegative integers.
(Contributed by
NM
, 16-Dec-2005)
Ref
Expression
Assertion
nnexpcl
⊢
A
∈
ℕ
∧
N
∈
ℕ
0
→
A
N
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
nnsscn
⊢
ℕ
⊆
ℂ
2
nnmulcl
⊢
x
∈
ℕ
∧
y
∈
ℕ
→
x
⁢
y
∈
ℕ
3
1nn
⊢
1
∈
ℕ
4
1
2
3
expcllem
⊢
A
∈
ℕ
∧
N
∈
ℕ
0
→
A
N
∈
ℕ