Metamath Proof Explorer


Theorem nnfi

Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion nnfi A ω A Fin

Proof

Step Hyp Ref Expression
1 enrefnn A ω A A
2 breq2 x = A A x A A
3 2 rspcev A ω A A x ω A x
4 1 3 mpdan A ω x ω A x
5 isfi A Fin x ω A x
6 4 5 sylibr A ω A Fin