Metamath Proof Explorer


Theorem nnfoctb

Description: There exists a mapping from NN onto any (nonempty) countable set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion nnfoctb A ω A f f : onto A

Proof

Step Hyp Ref Expression
1 simpr A ω A A
2 reldom Rel
3 2 a1i A ω Rel
4 brrelex1 Rel A ω A V
5 3 4 mpancom A ω A V
6 0sdomg A V A A
7 5 6 syl A ω A A
8 7 adantr A ω A A A
9 1 8 mpbird A ω A A
10 nnenom ω
11 10 ensymi ω
12 11 a1i A ω ω
13 domentr A ω ω A
14 12 13 mpdan A ω A
15 14 adantr A ω A A
16 fodomr A A f f : onto A
17 9 15 16 syl2anc A ω A f f : onto A