Metamath Proof Explorer


Theorem nngt0

Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999)

Ref Expression
Assertion nngt0 A 0 < A

Proof

Step Hyp Ref Expression
1 nnre A A
2 nnge1 A 1 A
3 0lt1 0 < 1
4 0re 0
5 1re 1
6 ltletr 0 1 A 0 < 1 1 A 0 < A
7 4 5 6 mp3an12 A 0 < 1 1 A 0 < A
8 3 7 mpani A 1 A 0 < A
9 1 2 8 sylc A 0 < A