Database
REAL AND COMPLEX NUMBERS
Integer sets
Principle of mathematical induction
nngt0
Next ⟩
nnnlt1
Metamath Proof Explorer
Ascii
Unicode
Theorem
nngt0
Description:
A positive integer is positive.
(Contributed by
NM
, 26-Sep-1999)
Ref
Expression
Assertion
nngt0
⊢
A
∈
ℕ
→
0
<
A
Proof
Step
Hyp
Ref
Expression
1
nnre
⊢
A
∈
ℕ
→
A
∈
ℝ
2
nnge1
⊢
A
∈
ℕ
→
1
≤
A
3
0lt1
⊢
0
<
1
4
0re
⊢
0
∈
ℝ
5
1re
⊢
1
∈
ℝ
6
ltletr
⊢
0
∈
ℝ
∧
1
∈
ℝ
∧
A
∈
ℝ
→
0
<
1
∧
1
≤
A
→
0
<
A
7
4
5
6
mp3an12
⊢
A
∈
ℝ
→
0
<
1
∧
1
≤
A
→
0
<
A
8
3
7
mpani
⊢
A
∈
ℝ
→
1
≤
A
→
0
<
A
9
1
2
8
sylc
⊢
A
∈
ℕ
→
0
<
A