Metamath Proof Explorer


Theorem nnindd

Description: Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020)

Ref Expression
Hypotheses nnindd.1 x = 1 ψ χ
nnindd.2 x = y ψ θ
nnindd.3 x = y + 1 ψ τ
nnindd.4 x = A ψ η
nnindd.5 φ χ
nnindd.6 φ y θ τ
Assertion nnindd φ A η

Proof

Step Hyp Ref Expression
1 nnindd.1 x = 1 ψ χ
2 nnindd.2 x = y ψ θ
3 nnindd.3 x = y + 1 ψ τ
4 nnindd.4 x = A ψ η
5 nnindd.5 φ χ
6 nnindd.6 φ y θ τ
7 1 imbi2d x = 1 φ ψ φ χ
8 2 imbi2d x = y φ ψ φ θ
9 3 imbi2d x = y + 1 φ ψ φ τ
10 4 imbi2d x = A φ ψ φ η
11 6 ex φ y θ τ
12 11 expcom y φ θ τ
13 12 a2d y φ θ φ τ
14 7 8 9 10 5 13 nnind A φ η
15 14 impcom φ A η