Metamath Proof Explorer


Theorem nnledivrp

Description: Division of a positive integer by a positive number is less than or equal to the integer iff the number is greater than or equal to 1. (Contributed by AV, 19-Jun-2021)

Ref Expression
Assertion nnledivrp A B + 1 B A B A

Proof

Step Hyp Ref Expression
1 1re 1
2 0lt1 0 < 1
3 1 2 pm3.2i 1 0 < 1
4 rpregt0 B + B 0 < B
5 4 adantl A B + B 0 < B
6 nnre A A
7 nngt0 A 0 < A
8 6 7 jca A A 0 < A
9 8 adantr A B + A 0 < A
10 lediv2 1 0 < 1 B 0 < B A 0 < A 1 B A B A 1
11 3 5 9 10 mp3an2i A B + 1 B A B A 1
12 nncn A A
13 12 div1d A A 1 = A
14 13 adantr A B + A 1 = A
15 14 breq2d A B + A B A 1 A B A
16 11 15 bitrd A B + 1 B A B A