Metamath Proof Explorer


Theorem nnleltp1

Description: Positive integer ordering relation. (Contributed by NM, 13-Aug-2001) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nnleltp1 A B A B A < B + 1

Proof

Step Hyp Ref Expression
1 nnz A A
2 nnz B B
3 zleltp1 A B A B A < B + 1
4 1 2 3 syl2an A B A B A < B + 1