Metamath Proof Explorer


Theorem nnlesq

Description: A positive integer is less than or equal to its square. (Contributed by NM, 15-Sep-1999) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion nnlesq N N N 2

Proof

Step Hyp Ref Expression
1 nncn N N
2 1 mulid1d N N 1 = N
3 nnge1 N 1 N
4 1red N 1
5 nnre N N
6 nngt0 N 0 < N
7 lemul2 1 N N 0 < N 1 N N 1 N N
8 4 5 5 6 7 syl112anc N 1 N N 1 N N
9 3 8 mpbid N N 1 N N
10 2 9 eqbrtrrd N N N N
11 sqval N N 2 = N N
12 1 11 syl N N 2 = N N
13 10 12 breqtrrd N N N 2