Metamath Proof Explorer


Theorem nnlim

Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995)

Ref Expression
Assertion nnlim A ω ¬ Lim A

Proof

Step Hyp Ref Expression
1 nnord A ω Ord A
2 ordirr Ord A ¬ A A
3 1 2 syl A ω ¬ A A
4 elom A ω A On x Lim x A x
5 4 simprbi A ω x Lim x A x
6 limeq x = A Lim x Lim A
7 eleq2 x = A A x A A
8 6 7 imbi12d x = A Lim x A x Lim A A A
9 8 spcgv A ω x Lim x A x Lim A A A
10 5 9 mpd A ω Lim A A A
11 3 10 mtod A ω ¬ Lim A