Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
The natural numbers (i.e., finite ordinals)
nnlim
Next ⟩
omssnlim
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnlim
Description:
A natural number is not a limit ordinal.
(Contributed by
NM
, 18-Oct-1995)
Ref
Expression
Assertion
nnlim
⊢
A
∈
ω
→
¬
Lim
⁡
A
Proof
Step
Hyp
Ref
Expression
1
nnord
⊢
A
∈
ω
→
Ord
⁡
A
2
ordirr
⊢
Ord
⁡
A
→
¬
A
∈
A
3
1
2
syl
⊢
A
∈
ω
→
¬
A
∈
A
4
elom
⊢
A
∈
ω
↔
A
∈
On
∧
∀
x
Lim
⁡
x
→
A
∈
x
5
4
simprbi
⊢
A
∈
ω
→
∀
x
Lim
⁡
x
→
A
∈
x
6
limeq
⊢
x
=
A
→
Lim
⁡
x
↔
Lim
⁡
A
7
eleq2
⊢
x
=
A
→
A
∈
x
↔
A
∈
A
8
6
7
imbi12d
⊢
x
=
A
→
Lim
⁡
x
→
A
∈
x
↔
Lim
⁡
A
→
A
∈
A
9
8
spcgv
⊢
A
∈
ω
→
∀
x
Lim
⁡
x
→
A
∈
x
→
Lim
⁡
A
→
A
∈
A
10
5
9
mpd
⊢
A
∈
ω
→
Lim
⁡
A
→
A
∈
A
11
3
10
mtod
⊢
A
∈
ω
→
¬
Lim
⁡
A