Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
nnltlem1
Next ⟩
nnm1ge0
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnltlem1
Description:
Positive integer ordering relation.
(Contributed by
NM
, 21-Jun-2005)
Ref
Expression
Assertion
nnltlem1
⊢
M
∈
ℕ
∧
N
∈
ℕ
→
M
<
N
↔
M
≤
N
−
1
Proof
Step
Hyp
Ref
Expression
1
nnz
⊢
M
∈
ℕ
→
M
∈
ℤ
2
nnz
⊢
N
∈
ℕ
→
N
∈
ℤ
3
zltlem1
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
<
N
↔
M
≤
N
−
1
4
1
2
3
syl2an
⊢
M
∈
ℕ
∧
N
∈
ℕ
→
M
<
N
↔
M
≤
N
−
1