Metamath Proof Explorer


Theorem nnltlem1

Description: Positive integer ordering relation. (Contributed by NM, 21-Jun-2005)

Ref Expression
Assertion nnltlem1 M N M < N M N 1

Proof

Step Hyp Ref Expression
1 nnz M M
2 nnz N N
3 zltlem1 M N M < N M N 1
4 1 2 3 syl2an M N M < N M N 1