Metamath Proof Explorer


Theorem nnltp1le

Description: Positive integer ordering relation. (Contributed by NM, 19-Aug-2001)

Ref Expression
Assertion nnltp1le A B A < B A + 1 B

Proof

Step Hyp Ref Expression
1 nnz A A
2 nnz B B
3 zltp1le A B A < B A + 1 B
4 1 2 3 syl2an A B A < B A + 1 B