Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
nnltp1le
Next ⟩
nnaddm1cl
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnltp1le
Description:
Positive integer ordering relation.
(Contributed by
NM
, 19-Aug-2001)
Ref
Expression
Assertion
nnltp1le
⊢
A
∈
ℕ
∧
B
∈
ℕ
→
A
<
B
↔
A
+
1
≤
B
Proof
Step
Hyp
Ref
Expression
1
nnz
⊢
A
∈
ℕ
→
A
∈
ℤ
2
nnz
⊢
B
∈
ℕ
→
B
∈
ℤ
3
zltp1le
⊢
A
∈
ℤ
∧
B
∈
ℤ
→
A
<
B
↔
A
+
1
≤
B
4
1
2
3
syl2an
⊢
A
∈
ℕ
∧
B
∈
ℕ
→
A
<
B
↔
A
+
1
≤
B