| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnmordi |
|
| 2 |
1
|
ex |
|
| 3 |
2
|
impcomd |
|
| 4 |
3
|
3adant1 |
|
| 5 |
|
ne0i |
|
| 6 |
|
nnm0r |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
eqeq1d |
|
| 9 |
6 8
|
syl5ibrcom |
|
| 10 |
9
|
necon3d |
|
| 11 |
5 10
|
syl5 |
|
| 12 |
11
|
adantr |
|
| 13 |
|
nnord |
|
| 14 |
|
ord0eln0 |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
adantl |
|
| 17 |
12 16
|
sylibrd |
|
| 18 |
17
|
3adant1 |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
a1i |
|
| 21 |
|
nnmordi |
|
| 22 |
21
|
3adantl2 |
|
| 23 |
20 22
|
orim12d |
|
| 24 |
23
|
con3d |
|
| 25 |
|
simpl3 |
|
| 26 |
|
simpl1 |
|
| 27 |
|
nnmcl |
|
| 28 |
25 26 27
|
syl2anc |
|
| 29 |
|
simpl2 |
|
| 30 |
|
nnmcl |
|
| 31 |
25 29 30
|
syl2anc |
|
| 32 |
|
nnord |
|
| 33 |
|
nnord |
|
| 34 |
|
ordtri2 |
|
| 35 |
32 33 34
|
syl2an |
|
| 36 |
28 31 35
|
syl2anc |
|
| 37 |
|
nnord |
|
| 38 |
|
nnord |
|
| 39 |
|
ordtri2 |
|
| 40 |
37 38 39
|
syl2an |
|
| 41 |
26 29 40
|
syl2anc |
|
| 42 |
24 36 41
|
3imtr4d |
|
| 43 |
42
|
ex |
|
| 44 |
43
|
com23 |
|
| 45 |
18 44
|
mpdd |
|
| 46 |
45 18
|
jcad |
|
| 47 |
4 46
|
impbid |
|