Metamath Proof Explorer


Theorem nnmordi

Description: Ordering property of multiplication. Half of Proposition 8.19 of TakeutiZaring p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnmordi B ω C ω C A B C 𝑜 A C 𝑜 B

Proof

Step Hyp Ref Expression
1 elnn A B B ω A ω
2 1 expcom B ω A B A ω
3 eleq2 x = B A x A B
4 oveq2 x = B C 𝑜 x = C 𝑜 B
5 4 eleq2d x = B C 𝑜 A C 𝑜 x C 𝑜 A C 𝑜 B
6 3 5 imbi12d x = B A x C 𝑜 A C 𝑜 x A B C 𝑜 A C 𝑜 B
7 6 imbi2d x = B A ω C ω C A x C 𝑜 A C 𝑜 x A ω C ω C A B C 𝑜 A C 𝑜 B
8 eleq2 x = A x A
9 oveq2 x = C 𝑜 x = C 𝑜
10 9 eleq2d x = C 𝑜 A C 𝑜 x C 𝑜 A C 𝑜
11 8 10 imbi12d x = A x C 𝑜 A C 𝑜 x A C 𝑜 A C 𝑜
12 eleq2 x = y A x A y
13 oveq2 x = y C 𝑜 x = C 𝑜 y
14 13 eleq2d x = y C 𝑜 A C 𝑜 x C 𝑜 A C 𝑜 y
15 12 14 imbi12d x = y A x C 𝑜 A C 𝑜 x A y C 𝑜 A C 𝑜 y
16 eleq2 x = suc y A x A suc y
17 oveq2 x = suc y C 𝑜 x = C 𝑜 suc y
18 17 eleq2d x = suc y C 𝑜 A C 𝑜 x C 𝑜 A C 𝑜 suc y
19 16 18 imbi12d x = suc y A x C 𝑜 A C 𝑜 x A suc y C 𝑜 A C 𝑜 suc y
20 noel ¬ A
21 20 pm2.21i A C 𝑜 A C 𝑜
22 21 a1i A ω C ω C A C 𝑜 A C 𝑜
23 elsuci A suc y A y A = y
24 nnmcl C ω y ω C 𝑜 y ω
25 simpl C ω y ω C ω
26 24 25 jca C ω y ω C 𝑜 y ω C ω
27 nnaword1 C 𝑜 y ω C ω C 𝑜 y C 𝑜 y + 𝑜 C
28 27 sseld C 𝑜 y ω C ω C 𝑜 A C 𝑜 y C 𝑜 A C 𝑜 y + 𝑜 C
29 28 imim2d C 𝑜 y ω C ω A y C 𝑜 A C 𝑜 y A y C 𝑜 A C 𝑜 y + 𝑜 C
30 29 imp C 𝑜 y ω C ω A y C 𝑜 A C 𝑜 y A y C 𝑜 A C 𝑜 y + 𝑜 C
31 30 adantrl C 𝑜 y ω C ω C A y C 𝑜 A C 𝑜 y A y C 𝑜 A C 𝑜 y + 𝑜 C
32 nna0 C 𝑜 y ω C 𝑜 y + 𝑜 = C 𝑜 y
33 32 ad2antrr C 𝑜 y ω C ω C C 𝑜 y + 𝑜 = C 𝑜 y
34 nnaordi C ω C 𝑜 y ω C C 𝑜 y + 𝑜 C 𝑜 y + 𝑜 C
35 34 ancoms C 𝑜 y ω C ω C C 𝑜 y + 𝑜 C 𝑜 y + 𝑜 C
36 35 imp C 𝑜 y ω C ω C C 𝑜 y + 𝑜 C 𝑜 y + 𝑜 C
37 33 36 eqeltrrd C 𝑜 y ω C ω C C 𝑜 y C 𝑜 y + 𝑜 C
38 oveq2 A = y C 𝑜 A = C 𝑜 y
39 38 eleq1d A = y C 𝑜 A C 𝑜 y + 𝑜 C C 𝑜 y C 𝑜 y + 𝑜 C
40 37 39 syl5ibrcom C 𝑜 y ω C ω C A = y C 𝑜 A C 𝑜 y + 𝑜 C
41 40 adantrr C 𝑜 y ω C ω C A y C 𝑜 A C 𝑜 y A = y C 𝑜 A C 𝑜 y + 𝑜 C
42 31 41 jaod C 𝑜 y ω C ω C A y C 𝑜 A C 𝑜 y A y A = y C 𝑜 A C 𝑜 y + 𝑜 C
43 26 42 sylan C ω y ω C A y C 𝑜 A C 𝑜 y A y A = y C 𝑜 A C 𝑜 y + 𝑜 C
44 23 43 syl5 C ω y ω C A y C 𝑜 A C 𝑜 y A suc y C 𝑜 A C 𝑜 y + 𝑜 C
45 nnmsuc C ω y ω C 𝑜 suc y = C 𝑜 y + 𝑜 C
46 45 eleq2d C ω y ω C 𝑜 A C 𝑜 suc y C 𝑜 A C 𝑜 y + 𝑜 C
47 46 adantr C ω y ω C A y C 𝑜 A C 𝑜 y C 𝑜 A C 𝑜 suc y C 𝑜 A C 𝑜 y + 𝑜 C
48 44 47 sylibrd C ω y ω C A y C 𝑜 A C 𝑜 y A suc y C 𝑜 A C 𝑜 suc y
49 48 exp43 C ω y ω C A y C 𝑜 A C 𝑜 y A suc y C 𝑜 A C 𝑜 suc y
50 49 com12 y ω C ω C A y C 𝑜 A C 𝑜 y A suc y C 𝑜 A C 𝑜 suc y
51 50 adantld y ω A ω C ω C A y C 𝑜 A C 𝑜 y A suc y C 𝑜 A C 𝑜 suc y
52 51 impd y ω A ω C ω C A y C 𝑜 A C 𝑜 y A suc y C 𝑜 A C 𝑜 suc y
53 11 15 19 22 52 finds2 x ω A ω C ω C A x C 𝑜 A C 𝑜 x
54 7 53 vtoclga B ω A ω C ω C A B C 𝑜 A C 𝑜 B
55 54 com23 B ω A B A ω C ω C C 𝑜 A C 𝑜 B
56 55 exp4a B ω A B A ω C ω C C 𝑜 A C 𝑜 B
57 56 exp4a B ω A B A ω C ω C C 𝑜 A C 𝑜 B
58 2 57 mpdd B ω A B C ω C C 𝑜 A C 𝑜 B
59 58 com34 B ω A B C C ω C 𝑜 A C 𝑜 B
60 59 com24 B ω C ω C A B C 𝑜 A C 𝑜 B
61 60 imp31 B ω C ω C A B C 𝑜 A C 𝑜 B