Step |
Hyp |
Ref |
Expression |
1 |
|
elnn |
|
2 |
1
|
expcom |
|
3 |
|
eleq2 |
|
4 |
|
oveq2 |
|
5 |
4
|
eleq2d |
|
6 |
3 5
|
imbi12d |
|
7 |
6
|
imbi2d |
|
8 |
|
eleq2 |
|
9 |
|
oveq2 |
|
10 |
9
|
eleq2d |
|
11 |
8 10
|
imbi12d |
|
12 |
|
eleq2 |
|
13 |
|
oveq2 |
|
14 |
13
|
eleq2d |
|
15 |
12 14
|
imbi12d |
|
16 |
|
eleq2 |
|
17 |
|
oveq2 |
|
18 |
17
|
eleq2d |
|
19 |
16 18
|
imbi12d |
|
20 |
|
noel |
|
21 |
20
|
pm2.21i |
|
22 |
21
|
a1i |
|
23 |
|
elsuci |
|
24 |
|
nnmcl |
|
25 |
|
simpl |
|
26 |
24 25
|
jca |
|
27 |
|
nnaword1 |
|
28 |
27
|
sseld |
|
29 |
28
|
imim2d |
|
30 |
29
|
imp |
|
31 |
30
|
adantrl |
|
32 |
|
nna0 |
|
33 |
32
|
ad2antrr |
|
34 |
|
nnaordi |
|
35 |
34
|
ancoms |
|
36 |
35
|
imp |
|
37 |
33 36
|
eqeltrrd |
|
38 |
|
oveq2 |
|
39 |
38
|
eleq1d |
|
40 |
37 39
|
syl5ibrcom |
|
41 |
40
|
adantrr |
|
42 |
31 41
|
jaod |
|
43 |
26 42
|
sylan |
|
44 |
23 43
|
syl5 |
|
45 |
|
nnmsuc |
|
46 |
45
|
eleq2d |
|
47 |
46
|
adantr |
|
48 |
44 47
|
sylibrd |
|
49 |
48
|
exp43 |
|
50 |
49
|
com12 |
|
51 |
50
|
adantld |
|
52 |
51
|
impd |
|
53 |
11 15 19 22 52
|
finds2 |
|
54 |
7 53
|
vtoclga |
|
55 |
54
|
com23 |
|
56 |
55
|
exp4a |
|
57 |
56
|
exp4a |
|
58 |
2 57
|
mpdd |
|
59 |
58
|
com34 |
|
60 |
59
|
com24 |
|
61 |
60
|
imp31 |
|