Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
|
id |
|
4 |
2 3
|
oveq12d |
|
5 |
1 4
|
eqeq12d |
|
6 |
5
|
imbi2d |
|
7 |
|
oveq2 |
|
8 |
|
oveq2 |
|
9 |
|
id |
|
10 |
8 9
|
oveq12d |
|
11 |
7 10
|
eqeq12d |
|
12 |
|
oveq2 |
|
13 |
|
oveq2 |
|
14 |
|
id |
|
15 |
13 14
|
oveq12d |
|
16 |
12 15
|
eqeq12d |
|
17 |
|
oveq2 |
|
18 |
|
oveq2 |
|
19 |
|
id |
|
20 |
18 19
|
oveq12d |
|
21 |
17 20
|
eqeq12d |
|
22 |
|
peano2 |
|
23 |
|
nnm0 |
|
24 |
22 23
|
syl |
|
25 |
|
nnm0 |
|
26 |
24 25
|
eqtr4d |
|
27 |
|
peano1 |
|
28 |
|
nnmcl |
|
29 |
27 28
|
mpan2 |
|
30 |
|
nna0 |
|
31 |
29 30
|
syl |
|
32 |
26 31
|
eqtr4d |
|
33 |
|
oveq1 |
|
34 |
|
peano2b |
|
35 |
|
nnmsuc |
|
36 |
34 35
|
sylanb |
|
37 |
|
nnmcl |
|
38 |
|
peano2b |
|
39 |
|
nnaass |
|
40 |
38 39
|
syl3an3b |
|
41 |
37 40
|
syl3an1 |
|
42 |
41
|
3expb |
|
43 |
42
|
anidms |
|
44 |
|
nnmsuc |
|
45 |
44
|
oveq1d |
|
46 |
|
nnaass |
|
47 |
34 46
|
syl3an3b |
|
48 |
37 47
|
syl3an1 |
|
49 |
48
|
3expb |
|
50 |
49
|
an42s |
|
51 |
50
|
anidms |
|
52 |
|
nnacom |
|
53 |
|
suceq |
|
54 |
52 53
|
syl |
|
55 |
|
nnasuc |
|
56 |
|
nnasuc |
|
57 |
56
|
ancoms |
|
58 |
54 55 57
|
3eqtr4d |
|
59 |
58
|
oveq2d |
|
60 |
51 59
|
eqtr4d |
|
61 |
43 45 60
|
3eqtr4d |
|
62 |
36 61
|
eqeq12d |
|
63 |
33 62
|
syl5ibr |
|
64 |
63
|
expcom |
|
65 |
11 16 21 32 64
|
finds2 |
|
66 |
6 65
|
vtoclga |
|
67 |
66
|
impcom |
|