Metamath Proof Explorer


Theorem nnmulcl

Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997) Remove dependency on ax-mulcom and ax-mulass . (Revised by Steven Nguyen, 24-Sep-2022)

Ref Expression
Assertion nnmulcl A B A B

Proof

Step Hyp Ref Expression
1 oveq2 x = 1 A x = A 1
2 1 eleq1d x = 1 A x A 1
3 2 imbi2d x = 1 A A x A A 1
4 oveq2 x = y A x = A y
5 4 eleq1d x = y A x A y
6 5 imbi2d x = y A A x A A y
7 oveq2 x = y + 1 A x = A y + 1
8 7 eleq1d x = y + 1 A x A y + 1
9 8 imbi2d x = y + 1 A A x A A y + 1
10 oveq2 x = B A x = A B
11 10 eleq1d x = B A x A B
12 11 imbi2d x = B A A x A A B
13 nnre A A
14 ax-1rid A A 1 = A
15 14 eleq1d A A 1 A
16 15 biimprd A A A 1
17 13 16 mpcom A A 1
18 nnaddcl A y A A y + A
19 18 ancoms A A y A y + A
20 nncn A A
21 nncn y y
22 ax-1cn 1
23 adddi A y 1 A y + 1 = A y + A 1
24 22 23 mp3an3 A y A y + 1 = A y + A 1
25 20 21 24 syl2an A y A y + 1 = A y + A 1
26 13 14 syl A A 1 = A
27 26 adantr A y A 1 = A
28 27 oveq2d A y A y + A 1 = A y + A
29 25 28 eqtrd A y A y + 1 = A y + A
30 29 eleq1d A y A y + 1 A y + A
31 19 30 syl5ibr A y A A y A y + 1
32 31 exp4b A y A A y A y + 1
33 32 pm2.43b y A A y A y + 1
34 33 a2d y A A y A A y + 1
35 3 6 9 12 17 34 nnind B A A B
36 35 impcom A B A B