Metamath Proof Explorer


Theorem nnmulge

Description: Multiplying by a positive integer M yields greater than or equal nonnegative integers. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Assertion nnmulge M N 0 N M N

Proof

Step Hyp Ref Expression
1 simpr M N 0 N 0
2 1 nn0cnd M N 0 N
3 2 mulid2d M N 0 1 N = N
4 1red M N 0 1
5 nnre M M
6 5 adantr M N 0 M
7 1 nn0red M N 0 N
8 1 nn0ge0d M N 0 0 N
9 nnge1 M 1 M
10 9 adantr M N 0 1 M
11 4 6 7 8 10 lemul1ad M N 0 1 N M N
12 3 11 eqbrtrrd M N 0 N M N