Metamath Proof Explorer


Theorem nnmwordri

Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of TakeutiZaring p. 63, limited to natural numbers. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion nnmwordri A ω B ω C ω A B A 𝑜 C B 𝑜 C

Proof

Step Hyp Ref Expression
1 nnmwordi A ω B ω C ω A B C 𝑜 A C 𝑜 B
2 nnmcom A ω C ω A 𝑜 C = C 𝑜 A
3 2 3adant2 A ω B ω C ω A 𝑜 C = C 𝑜 A
4 nnmcom B ω C ω B 𝑜 C = C 𝑜 B
5 4 3adant1 A ω B ω C ω B 𝑜 C = C 𝑜 B
6 3 5 sseq12d A ω B ω C ω A 𝑜 C B 𝑜 C C 𝑜 A C 𝑜 B
7 1 6 sylibrd A ω B ω C ω A B A 𝑜 C B 𝑜 C