Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
nnncan
Next ⟩
nnncan1
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnncan
Description:
Cancellation law for subtraction.
(Contributed by
NM
, 4-Sep-2005)
Ref
Expression
Assertion
nnncan
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
-
B
−
C
-
C
=
A
−
B
Proof
Step
Hyp
Ref
Expression
1
subcl
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
B
−
C
∈
ℂ
2
1
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
−
C
∈
ℂ
3
subsub4
⊢
A
∈
ℂ
∧
B
−
C
∈
ℂ
∧
C
∈
ℂ
→
A
-
B
−
C
-
C
=
A
−
B
-
C
+
C
4
2
3
syld3an2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
-
B
−
C
-
C
=
A
−
B
-
C
+
C
5
npcan
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
B
-
C
+
C
=
B
6
5
oveq2d
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
-
C
+
C
=
A
−
B
7
6
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
-
C
+
C
=
A
−
B
8
4
7
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
-
B
−
C
-
C
=
A
−
B