Metamath Proof Explorer


Theorem nnncan1

Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion nnncan1 A B C A - B - A C = C B

Proof

Step Hyp Ref Expression
1 subcl A C A C
2 1 3adant2 A B C A C
3 sub32 A B A C A - B - A C = A - A C - B
4 2 3 syld3an3 A B C A - B - A C = A - A C - B
5 nncan A C A A C = C
6 5 3adant2 A B C A A C = C
7 6 oveq1d A B C A - A C - B = C B
8 4 7 eqtrd A B C A - B - A C = C B