Metamath Proof Explorer


Theorem nnncan1d

Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subaddd.3 φ C
Assertion nnncan1d φ A - B - A C = C B

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subaddd.3 φ C
4 nnncan1 A B C A - B - A C = C B
5 1 2 3 4 syl3anc φ A - B - A C = C B