Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
nnncan2
Next ⟩
npncan3
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnncan2
Description:
Cancellation law for subtraction.
(Contributed by
NM
, 1-Oct-2005)
Ref
Expression
Assertion
nnncan2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
-
C
-
B
−
C
=
A
−
B
Proof
Step
Hyp
Ref
Expression
1
subcl
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
B
−
C
∈
ℂ
2
1
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
−
C
∈
ℂ
3
sub32
⊢
A
∈
ℂ
∧
B
−
C
∈
ℂ
∧
C
∈
ℂ
→
A
-
B
−
C
-
C
=
A
-
C
-
B
−
C
4
2
3
syld3an2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
-
B
−
C
-
C
=
A
-
C
-
B
−
C
5
nnncan
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
-
B
−
C
-
C
=
A
−
B
6
4
5
eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
-
C
-
B
−
C
=
A
−
B