Metamath Proof Explorer


Theorem nnncan2

Description: Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005)

Ref Expression
Assertion nnncan2 A B C A - C - B C = A B

Proof

Step Hyp Ref Expression
1 subcl B C B C
2 1 3adant1 A B C B C
3 sub32 A B C C A - B C - C = A - C - B C
4 2 3 syld3an2 A B C A - B C - C = A - C - B C
5 nnncan A B C A - B C - C = A B
6 4 5 eqtr3d A B C A - C - B C = A B