Metamath Proof Explorer


Theorem nnne0

Description: A positive integer is nonzero. See nnne0ALT for a shorter proof using ax-pre-mulgt0 . This proof avoids 0lt1 , and thus ax-pre-mulgt0 , by splitting ax-1ne0 into the two separate cases 0 < 1 and 1 < 0 . (Contributed by NM, 27-Sep-1999) Remove dependency on ax-pre-mulgt0 . (Revised by Steven Nguyen, 30-Jan-2023)

Ref Expression
Assertion nnne0 A A 0

Proof

Step Hyp Ref Expression
1 ax-1ne0 1 0
2 1re 1
3 0re 0
4 2 3 lttri2i 1 0 1 < 0 0 < 1
5 1 4 mpbi 1 < 0 0 < 1
6 breq1 x = 1 x < 0 1 < 0
7 6 imbi2d x = 1 1 < 0 x < 0 1 < 0 1 < 0
8 breq1 x = y x < 0 y < 0
9 8 imbi2d x = y 1 < 0 x < 0 1 < 0 y < 0
10 breq1 x = y + 1 x < 0 y + 1 < 0
11 10 imbi2d x = y + 1 1 < 0 x < 0 1 < 0 y + 1 < 0
12 breq1 x = A x < 0 A < 0
13 12 imbi2d x = A 1 < 0 x < 0 1 < 0 A < 0
14 id 1 < 0 1 < 0
15 simp1 y 1 < 0 y < 0 y
16 15 nnred y 1 < 0 y < 0 y
17 1red y 1 < 0 y < 0 1
18 16 17 readdcld y 1 < 0 y < 0 y + 1
19 3 2 readdcli 0 + 1
20 19 a1i y 1 < 0 y < 0 0 + 1
21 0red y 1 < 0 y < 0 0
22 simp3 y 1 < 0 y < 0 y < 0
23 16 21 17 22 ltadd1dd y 1 < 0 y < 0 y + 1 < 0 + 1
24 ax-1cn 1
25 24 addid2i 0 + 1 = 1
26 simp2 y 1 < 0 y < 0 1 < 0
27 25 26 eqbrtrid y 1 < 0 y < 0 0 + 1 < 0
28 18 20 21 23 27 lttrd y 1 < 0 y < 0 y + 1 < 0
29 28 3exp y 1 < 0 y < 0 y + 1 < 0
30 29 a2d y 1 < 0 y < 0 1 < 0 y + 1 < 0
31 7 9 11 13 14 30 nnind A 1 < 0 A < 0
32 31 imp A 1 < 0 A < 0
33 32 lt0ne0d A 1 < 0 A 0
34 33 ex A 1 < 0 A 0
35 breq2 x = 1 0 < x 0 < 1
36 35 imbi2d x = 1 0 < 1 0 < x 0 < 1 0 < 1
37 breq2 x = y 0 < x 0 < y
38 37 imbi2d x = y 0 < 1 0 < x 0 < 1 0 < y
39 breq2 x = y + 1 0 < x 0 < y + 1
40 39 imbi2d x = y + 1 0 < 1 0 < x 0 < 1 0 < y + 1
41 breq2 x = A 0 < x 0 < A
42 41 imbi2d x = A 0 < 1 0 < x 0 < 1 0 < A
43 id 0 < 1 0 < 1
44 simp1 y 0 < 1 0 < y y
45 44 nnred y 0 < 1 0 < y y
46 1red y 0 < 1 0 < y 1
47 simp3 y 0 < 1 0 < y 0 < y
48 simp2 y 0 < 1 0 < y 0 < 1
49 45 46 47 48 addgt0d y 0 < 1 0 < y 0 < y + 1
50 49 3exp y 0 < 1 0 < y 0 < y + 1
51 50 a2d y 0 < 1 0 < y 0 < 1 0 < y + 1
52 36 38 40 42 43 51 nnind A 0 < 1 0 < A
53 52 imp A 0 < 1 0 < A
54 53 gt0ne0d A 0 < 1 A 0
55 54 ex A 0 < 1 A 0
56 34 55 jaod A 1 < 0 0 < 1 A 0
57 5 56 mpi A A 0