Metamath Proof Explorer


Theorem nnnegz

Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002)

Ref Expression
Assertion nnnegz N N

Proof

Step Hyp Ref Expression
1 nnre N N
2 1 renegcld N N
3 nncn N N
4 negneg N -N = N
5 4 eleq1d N -N N
6 5 biimprd N N -N
7 3 6 mpcom N -N
8 7 3mix3d N N = 0 N -N
9 elz N N N = 0 N -N
10 2 8 9 sylanbrc N N