Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
nnnegz
Next ⟩
zre
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnnegz
Description:
The negative of a positive integer is an integer.
(Contributed by
NM
, 12-Jan-2002)
Ref
Expression
Assertion
nnnegz
⊢
N
∈
ℕ
→
−
N
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
nnre
⊢
N
∈
ℕ
→
N
∈
ℝ
2
1
renegcld
⊢
N
∈
ℕ
→
−
N
∈
ℝ
3
nncn
⊢
N
∈
ℕ
→
N
∈
ℂ
4
negneg
⊢
N
∈
ℂ
→
−
-
N
=
N
5
4
eleq1d
⊢
N
∈
ℂ
→
−
-
N
∈
ℕ
↔
N
∈
ℕ
6
5
biimprd
⊢
N
∈
ℂ
→
N
∈
ℕ
→
−
-
N
∈
ℕ
7
3
6
mpcom
⊢
N
∈
ℕ
→
−
-
N
∈
ℕ
8
7
3mix3d
⊢
N
∈
ℕ
→
−
N
=
0
∨
−
N
∈
ℕ
∨
−
-
N
∈
ℕ
9
elz
⊢
−
N
∈
ℤ
↔
−
N
∈
ℝ
∧
−
N
=
0
∨
−
N
∈
ℕ
∨
−
-
N
∈
ℕ
10
2
8
9
sylanbrc
⊢
N
∈
ℕ
→
−
N
∈
ℤ