Database
REAL AND COMPLEX NUMBERS
Integer sets
Principle of mathematical induction
nnneneg
Next ⟩
0nnn
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnneneg
Description:
No positive integer is equal to its negation.
(Contributed by
AV
, 20-Jun-2023)
Ref
Expression
Assertion
nnneneg
⊢
A
∈
ℕ
→
A
≠
−
A
Proof
Step
Hyp
Ref
Expression
1
nnne0
⊢
A
∈
ℕ
→
A
≠
0
2
1
neneqd
⊢
A
∈
ℕ
→
¬
A
=
0
3
nncn
⊢
A
∈
ℕ
→
A
∈
ℂ
4
3
eqnegd
⊢
A
∈
ℕ
→
A
=
−
A
↔
A
=
0
5
2
4
mtbird
⊢
A
∈
ℕ
→
¬
A
=
−
A
6
5
neqned
⊢
A
∈
ℕ
→
A
≠
−
A