| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnon |
|
| 2 |
|
onnbtwn |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
3ad2ant1 |
|
| 5 |
|
suceq |
|
| 6 |
5
|
eqeq1d |
|
| 7 |
6
|
3ad2ant3 |
|
| 8 |
|
ovex |
|
| 9 |
8
|
sucid |
|
| 10 |
|
eleq2 |
|
| 11 |
9 10
|
mpbii |
|
| 12 |
|
2onn |
|
| 13 |
|
nnmord |
|
| 14 |
12 13
|
mp3an3 |
|
| 15 |
|
simpl |
|
| 16 |
14 15
|
biimtrrdi |
|
| 17 |
11 16
|
syl5 |
|
| 18 |
|
simpr |
|
| 19 |
|
nnmcl |
|
| 20 |
12 19
|
mpan |
|
| 21 |
|
nnon |
|
| 22 |
|
oa1suc |
|
| 23 |
20 21 22
|
3syl |
|
| 24 |
|
1oex |
|
| 25 |
24
|
sucid |
|
| 26 |
|
df-2o |
|
| 27 |
25 26
|
eleqtrri |
|
| 28 |
|
1onn |
|
| 29 |
|
nnaord |
|
| 30 |
28 12 20 29
|
mp3an12i |
|
| 31 |
27 30
|
mpbii |
|
| 32 |
|
nnmsuc |
|
| 33 |
12 32
|
mpan |
|
| 34 |
31 33
|
eleqtrrd |
|
| 35 |
23 34
|
eqeltrrd |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
18 36
|
eqeltrrd |
|
| 38 |
|
peano2 |
|
| 39 |
|
nnmord |
|
| 40 |
12 39
|
mp3an3 |
|
| 41 |
38 40
|
sylan2 |
|
| 42 |
41
|
ancoms |
|
| 43 |
42
|
adantr |
|
| 44 |
37 43
|
mpbird |
|
| 45 |
44
|
simpld |
|
| 46 |
45
|
ex |
|
| 47 |
17 46
|
jcad |
|
| 48 |
47
|
3adant3 |
|
| 49 |
7 48
|
sylbid |
|
| 50 |
4 49
|
mtod |
|