Metamath Proof Explorer


Theorem nnneo

Description: If a natural number is even, its successor is odd. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion nnneo A ω B ω C = 2 𝑜 𝑜 A ¬ suc C = 2 𝑜 𝑜 B

Proof

Step Hyp Ref Expression
1 nnon A ω A On
2 onnbtwn A On ¬ A B B suc A
3 1 2 syl A ω ¬ A B B suc A
4 3 3ad2ant1 A ω B ω C = 2 𝑜 𝑜 A ¬ A B B suc A
5 suceq C = 2 𝑜 𝑜 A suc C = suc 2 𝑜 𝑜 A
6 5 eqeq1d C = 2 𝑜 𝑜 A suc C = 2 𝑜 𝑜 B suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B
7 6 3ad2ant3 A ω B ω C = 2 𝑜 𝑜 A suc C = 2 𝑜 𝑜 B suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B
8 ovex 2 𝑜 𝑜 A V
9 8 sucid 2 𝑜 𝑜 A suc 2 𝑜 𝑜 A
10 eleq2 suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B 2 𝑜 𝑜 A suc 2 𝑜 𝑜 A 2 𝑜 𝑜 A 2 𝑜 𝑜 B
11 9 10 mpbii suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B 2 𝑜 𝑜 A 2 𝑜 𝑜 B
12 2onn 2 𝑜 ω
13 nnmord A ω B ω 2 𝑜 ω A B 2 𝑜 2 𝑜 𝑜 A 2 𝑜 𝑜 B
14 12 13 mp3an3 A ω B ω A B 2 𝑜 2 𝑜 𝑜 A 2 𝑜 𝑜 B
15 simpl A B 2 𝑜 A B
16 14 15 syl6bir A ω B ω 2 𝑜 𝑜 A 2 𝑜 𝑜 B A B
17 11 16 syl5 A ω B ω suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B A B
18 simpr A ω B ω suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B
19 nnmcl 2 𝑜 ω A ω 2 𝑜 𝑜 A ω
20 12 19 mpan A ω 2 𝑜 𝑜 A ω
21 nnon 2 𝑜 𝑜 A ω 2 𝑜 𝑜 A On
22 oa1suc 2 𝑜 𝑜 A On 2 𝑜 𝑜 A + 𝑜 1 𝑜 = suc 2 𝑜 𝑜 A
23 20 21 22 3syl A ω 2 𝑜 𝑜 A + 𝑜 1 𝑜 = suc 2 𝑜 𝑜 A
24 1oex 1 𝑜 V
25 24 sucid 1 𝑜 suc 1 𝑜
26 df-2o 2 𝑜 = suc 1 𝑜
27 25 26 eleqtrri 1 𝑜 2 𝑜
28 1onn 1 𝑜 ω
29 nnaord 1 𝑜 ω 2 𝑜 ω 2 𝑜 𝑜 A ω 1 𝑜 2 𝑜 2 𝑜 𝑜 A + 𝑜 1 𝑜 2 𝑜 𝑜 A + 𝑜 2 𝑜
30 28 12 20 29 mp3an12i A ω 1 𝑜 2 𝑜 2 𝑜 𝑜 A + 𝑜 1 𝑜 2 𝑜 𝑜 A + 𝑜 2 𝑜
31 27 30 mpbii A ω 2 𝑜 𝑜 A + 𝑜 1 𝑜 2 𝑜 𝑜 A + 𝑜 2 𝑜
32 nnmsuc 2 𝑜 ω A ω 2 𝑜 𝑜 suc A = 2 𝑜 𝑜 A + 𝑜 2 𝑜
33 12 32 mpan A ω 2 𝑜 𝑜 suc A = 2 𝑜 𝑜 A + 𝑜 2 𝑜
34 31 33 eleqtrrd A ω 2 𝑜 𝑜 A + 𝑜 1 𝑜 2 𝑜 𝑜 suc A
35 23 34 eqeltrrd A ω suc 2 𝑜 𝑜 A 2 𝑜 𝑜 suc A
36 35 ad2antrr A ω B ω suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B suc 2 𝑜 𝑜 A 2 𝑜 𝑜 suc A
37 18 36 eqeltrrd A ω B ω suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B 2 𝑜 𝑜 B 2 𝑜 𝑜 suc A
38 peano2 A ω suc A ω
39 nnmord B ω suc A ω 2 𝑜 ω B suc A 2 𝑜 2 𝑜 𝑜 B 2 𝑜 𝑜 suc A
40 12 39 mp3an3 B ω suc A ω B suc A 2 𝑜 2 𝑜 𝑜 B 2 𝑜 𝑜 suc A
41 38 40 sylan2 B ω A ω B suc A 2 𝑜 2 𝑜 𝑜 B 2 𝑜 𝑜 suc A
42 41 ancoms A ω B ω B suc A 2 𝑜 2 𝑜 𝑜 B 2 𝑜 𝑜 suc A
43 42 adantr A ω B ω suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B B suc A 2 𝑜 2 𝑜 𝑜 B 2 𝑜 𝑜 suc A
44 37 43 mpbird A ω B ω suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B B suc A 2 𝑜
45 44 simpld A ω B ω suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B B suc A
46 45 ex A ω B ω suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B B suc A
47 17 46 jcad A ω B ω suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B A B B suc A
48 47 3adant3 A ω B ω C = 2 𝑜 𝑜 A suc 2 𝑜 𝑜 A = 2 𝑜 𝑜 B A B B suc A
49 7 48 sylbid A ω B ω C = 2 𝑜 𝑜 A suc C = 2 𝑜 𝑜 B A B B suc A
50 4 49 mtod A ω B ω C = 2 𝑜 𝑜 A ¬ suc C = 2 𝑜 𝑜 B