Database
REAL AND COMPLEX NUMBERS
Integer sets
Principle of mathematical induction
nnnle0
Next ⟩
nnne0
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnnle0
Description:
A positive integer is not less than or equal to zero.
(Contributed by
AV
, 13-May-2020)
Ref
Expression
Assertion
nnnle0
⊢
A
∈
ℕ
→
¬
A
≤
0
Proof
Step
Hyp
Ref
Expression
1
nngt0
⊢
A
∈
ℕ
→
0
<
A
2
0re
⊢
0
∈
ℝ
3
nnre
⊢
A
∈
ℕ
→
A
∈
ℝ
4
ltnle
⊢
0
∈
ℝ
∧
A
∈
ℝ
→
0
<
A
↔
¬
A
≤
0
5
4
bicomd
⊢
0
∈
ℝ
∧
A
∈
ℝ
→
¬
A
≤
0
↔
0
<
A
6
2
3
5
sylancr
⊢
A
∈
ℕ
→
¬
A
≤
0
↔
0
<
A
7
1
6
mpbird
⊢
A
∈
ℕ
→
¬
A
≤
0