Metamath Proof Explorer


Theorem nnnn0addcl

Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nnnn0addcl M N 0 M + N

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 nnaddcl M N M + N
3 oveq2 N = 0 M + N = M + 0
4 nncn M M
5 4 addid1d M M + 0 = M
6 3 5 sylan9eqr M N = 0 M + N = M
7 simpl M N = 0 M
8 6 7 eqeltrd M N = 0 M + N
9 2 8 jaodan M N N = 0 M + N
10 1 9 sylan2b M N 0 M + N