Metamath Proof Explorer


Theorem nno

Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Assertion nno N 2 N + 1 2 0 N 1 2

Proof

Step Hyp Ref Expression
1 eluz2b3 N 2 N N 1
2 nnnn0 N N 0
3 nn0o1gt2 N 0 N + 1 2 0 N = 1 2 < N
4 2 3 sylan N N + 1 2 0 N = 1 2 < N
5 eqneqall N = 1 N 1 N 1 2
6 5 a1d N = 1 N N + 1 2 0 N 1 N 1 2
7 nn0z N + 1 2 0 N + 1 2
8 peano2zm N + 1 2 N + 1 2 1
9 7 8 syl N + 1 2 0 N + 1 2 1
10 9 ad2antlr N N + 1 2 0 2 < N N + 1 2 1
11 2cn 2
12 11 mulid2i 1 2 = 2
13 nnre N N
14 13 ltp1d N N < N + 1
15 14 adantr N 2 < N N < N + 1
16 2re 2
17 peano2nn N N + 1
18 17 nnred N N + 1
19 lttr 2 N N + 1 2 < N N < N + 1 2 < N + 1
20 16 13 18 19 mp3an2i N 2 < N N < N + 1 2 < N + 1
21 20 expdimp N 2 < N N < N + 1 2 < N + 1
22 15 21 mpd N 2 < N 2 < N + 1
23 12 22 eqbrtrid N 2 < N 1 2 < N + 1
24 1red N 2 < N 1
25 18 adantr N 2 < N N + 1
26 2rp 2 +
27 26 a1i N 2 < N 2 +
28 24 25 27 ltmuldivd N 2 < N 1 2 < N + 1 1 < N + 1 2
29 23 28 mpbid N 2 < N 1 < N + 1 2
30 18 rehalfcld N N + 1 2
31 30 adantr N 2 < N N + 1 2
32 24 31 posdifd N 2 < N 1 < N + 1 2 0 < N + 1 2 1
33 29 32 mpbid N 2 < N 0 < N + 1 2 1
34 33 adantlr N N + 1 2 0 2 < N 0 < N + 1 2 1
35 elnnz N + 1 2 1 N + 1 2 1 0 < N + 1 2 1
36 10 34 35 sylanbrc N N + 1 2 0 2 < N N + 1 2 1
37 nncn N N
38 xp1d2m1eqxm1d2 N N + 1 2 1 = N 1 2
39 37 38 syl N N + 1 2 1 = N 1 2
40 39 eleq1d N N + 1 2 1 N 1 2
41 40 adantr N N + 1 2 0 N + 1 2 1 N 1 2
42 41 adantr N N + 1 2 0 2 < N N + 1 2 1 N 1 2
43 36 42 mpbid N N + 1 2 0 2 < N N 1 2
44 43 a1d N N + 1 2 0 2 < N N 1 N 1 2
45 44 expcom 2 < N N N + 1 2 0 N 1 N 1 2
46 6 45 jaoi N = 1 2 < N N N + 1 2 0 N 1 N 1 2
47 4 46 mpcom N N + 1 2 0 N 1 N 1 2
48 47 impancom N N 1 N + 1 2 0 N 1 2
49 1 48 sylbi N 2 N + 1 2 0 N 1 2
50 49 imp N 2 N + 1 2 0 N 1 2