| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2b3 |
|
| 2 |
|
nnnn0 |
|
| 3 |
|
nn0o1gt2 |
|
| 4 |
2 3
|
sylan |
|
| 5 |
|
eqneqall |
|
| 6 |
5
|
a1d |
|
| 7 |
|
nn0z |
|
| 8 |
|
peano2zm |
|
| 9 |
7 8
|
syl |
|
| 10 |
9
|
ad2antlr |
|
| 11 |
|
2cn |
|
| 12 |
11
|
mullidi |
|
| 13 |
|
nnre |
|
| 14 |
13
|
ltp1d |
|
| 15 |
14
|
adantr |
|
| 16 |
|
2re |
|
| 17 |
|
peano2nn |
|
| 18 |
17
|
nnred |
|
| 19 |
|
lttr |
|
| 20 |
16 13 18 19
|
mp3an2i |
|
| 21 |
20
|
expdimp |
|
| 22 |
15 21
|
mpd |
|
| 23 |
12 22
|
eqbrtrid |
|
| 24 |
|
1red |
|
| 25 |
18
|
adantr |
|
| 26 |
|
2rp |
|
| 27 |
26
|
a1i |
|
| 28 |
24 25 27
|
ltmuldivd |
|
| 29 |
23 28
|
mpbid |
|
| 30 |
18
|
rehalfcld |
|
| 31 |
30
|
adantr |
|
| 32 |
24 31
|
posdifd |
|
| 33 |
29 32
|
mpbid |
|
| 34 |
33
|
adantlr |
|
| 35 |
|
elnnz |
|
| 36 |
10 34 35
|
sylanbrc |
|
| 37 |
|
nncn |
|
| 38 |
|
xp1d2m1eqxm1d2 |
|
| 39 |
37 38
|
syl |
|
| 40 |
39
|
eleq1d |
|
| 41 |
40
|
adantr |
|
| 42 |
41
|
adantr |
|
| 43 |
36 42
|
mpbid |
|
| 44 |
43
|
a1d |
|
| 45 |
44
|
expcom |
|
| 46 |
6 45
|
jaoi |
|
| 47 |
4 46
|
mpcom |
|
| 48 |
47
|
impancom |
|
| 49 |
1 48
|
sylbi |
|
| 50 |
49
|
imp |
|