Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2b3 |
|
2 |
|
nnnn0 |
|
3 |
|
nn0o1gt2 |
|
4 |
2 3
|
sylan |
|
5 |
|
eqneqall |
|
6 |
5
|
a1d |
|
7 |
|
nn0z |
|
8 |
|
peano2zm |
|
9 |
7 8
|
syl |
|
10 |
9
|
ad2antlr |
|
11 |
|
2cn |
|
12 |
11
|
mulid2i |
|
13 |
|
nnre |
|
14 |
13
|
ltp1d |
|
15 |
14
|
adantr |
|
16 |
|
2re |
|
17 |
|
peano2nn |
|
18 |
17
|
nnred |
|
19 |
|
lttr |
|
20 |
16 13 18 19
|
mp3an2i |
|
21 |
20
|
expdimp |
|
22 |
15 21
|
mpd |
|
23 |
12 22
|
eqbrtrid |
|
24 |
|
1red |
|
25 |
18
|
adantr |
|
26 |
|
2rp |
|
27 |
26
|
a1i |
|
28 |
24 25 27
|
ltmuldivd |
|
29 |
23 28
|
mpbid |
|
30 |
18
|
rehalfcld |
|
31 |
30
|
adantr |
|
32 |
24 31
|
posdifd |
|
33 |
29 32
|
mpbid |
|
34 |
33
|
adantlr |
|
35 |
|
elnnz |
|
36 |
10 34 35
|
sylanbrc |
|
37 |
|
nncn |
|
38 |
|
xp1d2m1eqxm1d2 |
|
39 |
37 38
|
syl |
|
40 |
39
|
eleq1d |
|
41 |
40
|
adantr |
|
42 |
41
|
adantr |
|
43 |
36 42
|
mpbid |
|
44 |
43
|
a1d |
|
45 |
44
|
expcom |
|
46 |
6 45
|
jaoi |
|
47 |
4 46
|
mpcom |
|
48 |
47
|
impancom |
|
49 |
1 48
|
sylbi |
|
50 |
49
|
imp |
|