Metamath Proof Explorer


Theorem nnoALTV

Description: An alternate characterization of an odd number greater than 1. (Contributed by AV, 2-Jun-2020) (Revised by AV, 21-Jun-2020)

Ref Expression
Assertion nnoALTV N 2 N Odd N 1 2

Proof

Step Hyp Ref Expression
1 oddm1div2z N Odd N 1 2
2 1 adantl N 2 N Odd N 1 2
3 eluz2b1 N 2 N 1 < N
4 1red N 1
5 zre N N
6 4 5 posdifd N 1 < N 0 < N 1
7 6 biimpa N 1 < N 0 < N 1
8 peano2zm N N 1
9 8 zred N N 1
10 2re 2
11 10 a1i N 2
12 2pos 0 < 2
13 12 a1i N 0 < 2
14 9 11 13 3jca N N 1 2 0 < 2
15 14 adantr N 1 < N N 1 2 0 < 2
16 gt0div N 1 2 0 < 2 0 < N 1 0 < N 1 2
17 15 16 syl N 1 < N 0 < N 1 0 < N 1 2
18 7 17 mpbid N 1 < N 0 < N 1 2
19 3 18 sylbi N 2 0 < N 1 2
20 19 adantr N 2 N Odd 0 < N 1 2
21 elnnz N 1 2 N 1 2 0 < N 1 2
22 2 20 21 sylanbrc N 2 N Odd N 1 2