Metamath Proof Explorer


Theorem nnoddm1d2

Description: A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021)

Ref Expression
Assertion nnoddm1d2 N ¬ 2 N N + 1 2

Proof

Step Hyp Ref Expression
1 nnz N N
2 oddp1d2 N ¬ 2 N N + 1 2
3 1 2 syl N ¬ 2 N N + 1 2
4 peano2nn N N + 1
5 4 nnred N N + 1
6 2re 2
7 6 a1i N 2
8 nnre N N
9 1red N 1
10 nngt0 N 0 < N
11 0lt1 0 < 1
12 11 a1i N 0 < 1
13 8 9 10 12 addgt0d N 0 < N + 1
14 2pos 0 < 2
15 14 a1i N 0 < 2
16 5 7 13 15 divgt0d N 0 < N + 1 2
17 16 anim1ci N N + 1 2 N + 1 2 0 < N + 1 2
18 elnnz N + 1 2 N + 1 2 0 < N + 1 2
19 17 18 sylibr N N + 1 2 N + 1 2
20 19 ex N N + 1 2 N + 1 2
21 nnz N + 1 2 N + 1 2
22 20 21 impbid1 N N + 1 2 N + 1 2
23 3 22 bitrd N ¬ 2 N N + 1 2