Metamath Proof Explorer


Theorem nnoddn2prm

Description: A prime not equal to 2 is an odd positive integer. (Contributed by AV, 28-Jun-2021)

Ref Expression
Assertion nnoddn2prm N 2 N ¬ 2 N

Proof

Step Hyp Ref Expression
1 eldifi N 2 N
2 prmnn N N
3 1 2 syl N 2 N
4 oddprm N 2 N 1 2
5 nnz N 1 2 N 1 2
6 nnz N N
7 oddm1d2 N ¬ 2 N N 1 2
8 6 7 syl N ¬ 2 N N 1 2
9 5 8 syl5ibrcom N 1 2 N ¬ 2 N
10 4 9 syl N 2 N ¬ 2 N
11 3 10 jcai N 2 N ¬ 2 N