Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Pythagorean Triples
nnoddn2prm
Next ⟩
oddn2prm
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnoddn2prm
Description:
A prime not equal to
2
is an odd positive integer.
(Contributed by
AV
, 28-Jun-2021)
Ref
Expression
Assertion
nnoddn2prm
⊢
N
∈
ℙ
∖
2
→
N
∈
ℕ
∧
¬
2
∥
N
Proof
Step
Hyp
Ref
Expression
1
eldifi
⊢
N
∈
ℙ
∖
2
→
N
∈
ℙ
2
prmnn
⊢
N
∈
ℙ
→
N
∈
ℕ
3
1
2
syl
⊢
N
∈
ℙ
∖
2
→
N
∈
ℕ
4
oddprm
⊢
N
∈
ℙ
∖
2
→
N
−
1
2
∈
ℕ
5
nnz
⊢
N
−
1
2
∈
ℕ
→
N
−
1
2
∈
ℤ
6
nnz
⊢
N
∈
ℕ
→
N
∈
ℤ
7
oddm1d2
⊢
N
∈
ℤ
→
¬
2
∥
N
↔
N
−
1
2
∈
ℤ
8
6
7
syl
⊢
N
∈
ℕ
→
¬
2
∥
N
↔
N
−
1
2
∈
ℤ
9
5
8
syl5ibrcom
⊢
N
−
1
2
∈
ℕ
→
N
∈
ℕ
→
¬
2
∥
N
10
4
9
syl
⊢
N
∈
ℙ
∖
2
→
N
∈
ℕ
→
¬
2
∥
N
11
3
10
jcai
⊢
N
∈
ℙ
∖
2
→
N
∈
ℕ
∧
¬
2
∥
N