Metamath Proof Explorer


Theorem nnoddn2prmb

Description: A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021)

Ref Expression
Assertion nnoddn2prmb N 2 N ¬ 2 N

Proof

Step Hyp Ref Expression
1 eldifi N 2 N
2 oddn2prm N 2 ¬ 2 N
3 1 2 jca N 2 N ¬ 2 N
4 simpl N ¬ 2 N N
5 z2even 2 2
6 breq2 N = 2 2 N 2 2
7 5 6 mpbiri N = 2 2 N
8 7 a1i N N = 2 2 N
9 8 con3dimp N ¬ 2 N ¬ N = 2
10 9 neqned N ¬ 2 N N 2
11 nelsn N 2 ¬ N 2
12 10 11 syl N ¬ 2 N ¬ N 2
13 4 12 eldifd N ¬ 2 N N 2
14 3 13 impbii N 2 N ¬ 2 N