Database
REAL AND COMPLEX NUMBERS
Integer sets
Principle of mathematical induction
nnrecgt0
Next ⟩
nnsub
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnrecgt0
Description:
The reciprocal of a positive integer is positive.
(Contributed by
NM
, 25-Aug-1999)
Ref
Expression
Assertion
nnrecgt0
⊢
A
∈
ℕ
→
0
<
1
A
Proof
Step
Hyp
Ref
Expression
1
nnge1
⊢
A
∈
ℕ
→
1
≤
A
2
0lt1
⊢
0
<
1
3
nnre
⊢
A
∈
ℕ
→
A
∈
ℝ
4
0re
⊢
0
∈
ℝ
5
1re
⊢
1
∈
ℝ
6
ltletr
⊢
0
∈
ℝ
∧
1
∈
ℝ
∧
A
∈
ℝ
→
0
<
1
∧
1
≤
A
→
0
<
A
7
4
5
6
mp3an12
⊢
A
∈
ℝ
→
0
<
1
∧
1
≤
A
→
0
<
A
8
recgt0
⊢
A
∈
ℝ
∧
0
<
A
→
0
<
1
A
9
8
ex
⊢
A
∈
ℝ
→
0
<
A
→
0
<
1
A
10
7
9
syld
⊢
A
∈
ℝ
→
0
<
1
∧
1
≤
A
→
0
<
1
A
11
3
10
syl
⊢
A
∈
ℕ
→
0
<
1
∧
1
≤
A
→
0
<
1
A
12
2
11
mpani
⊢
A
∈
ℕ
→
1
≤
A
→
0
<
1
A
13
1
12
mpd
⊢
A
∈
ℕ
→
0
<
1
A