Metamath Proof Explorer


Theorem nnrecl

Description: There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of Apostol p. 28. (Contributed by NM, 8-Nov-2004)

Ref Expression
Assertion nnrecl A 0 < A n 1 n < A

Proof

Step Hyp Ref Expression
1 simpl A 0 < A A
2 gt0ne0 A 0 < A A 0
3 1 2 rereccld A 0 < A 1 A
4 arch 1 A n 1 A < n
5 3 4 syl A 0 < A n 1 A < n
6 recgt0 A 0 < A 0 < 1 A
7 3 6 jca A 0 < A 1 A 0 < 1 A
8 nnre n n
9 nngt0 n 0 < n
10 8 9 jca n n 0 < n
11 ltrec 1 A 0 < 1 A n 0 < n 1 A < n 1 n < 1 1 A
12 7 10 11 syl2an A 0 < A n 1 A < n 1 n < 1 1 A
13 recn A A
14 13 adantr A 0 < A A
15 14 2 recrecd A 0 < A 1 1 A = A
16 15 breq2d A 0 < A 1 n < 1 1 A 1 n < A
17 16 adantr A 0 < A n 1 n < 1 1 A 1 n < A
18 12 17 bitrd A 0 < A n 1 A < n 1 n < A
19 18 rexbidva A 0 < A n 1 A < n n 1 n < A
20 5 19 mpbid A 0 < A n 1 n < A