Metamath Proof Explorer


Theorem nnrp

Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008)

Ref Expression
Assertion nnrp A A +

Proof

Step Hyp Ref Expression
1 nnre A A
2 nngt0 A 0 < A
3 elrp A + A 0 < A
4 1 2 3 sylanbrc A A +