Metamath Proof Explorer


Theorem nnsplit

Description: Express the set of positive integers as the disjoint (see nnuzdisj ) union of the first N values and the rest. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Assertion nnsplit N = 1 N N + 1

Proof

Step Hyp Ref Expression
1 nnuz = 1
2 1 a1i N = 1
3 peano2nn N N + 1
4 3 1 eleqtrdi N N + 1 1
5 uzsplit N + 1 1 1 = 1 N + 1 - 1 N + 1
6 4 5 syl N 1 = 1 N + 1 - 1 N + 1
7 nncn N N
8 1cnd N 1
9 7 8 pncand N N + 1 - 1 = N
10 9 oveq2d N 1 N + 1 - 1 = 1 N
11 10 uneq1d N 1 N + 1 - 1 N + 1 = 1 N N + 1
12 2 6 11 3eqtrd N = 1 N N + 1