Database
REAL AND COMPLEX NUMBERS
Integer sets
Principle of mathematical induction
nnsubi
Next ⟩
nndiv
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnsubi
Description:
Subtraction of positive integers.
(Contributed by
NM
, 19-Aug-2001)
Ref
Expression
Hypotheses
nnsub.1
⊢
A
∈
ℕ
nnsub.2
⊢
B
∈
ℕ
Assertion
nnsubi
⊢
A
<
B
↔
B
−
A
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
nnsub.1
⊢
A
∈
ℕ
2
nnsub.2
⊢
B
∈
ℕ
3
nnsub
⊢
A
∈
ℕ
∧
B
∈
ℕ
→
A
<
B
↔
B
−
A
∈
ℕ
4
1
2
3
mp2an
⊢
A
<
B
↔
B
−
A
∈
ℕ