Metamath Proof Explorer


Theorem nnsuc

Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004)

Ref Expression
Assertion nnsuc A ω A x ω A = suc x

Proof

Step Hyp Ref Expression
1 nnlim A ω ¬ Lim A
2 1 adantr A ω A ¬ Lim A
3 nnord A ω Ord A
4 orduninsuc Ord A A = A ¬ x On A = suc x
5 4 adantr Ord A A A = A ¬ x On A = suc x
6 df-lim Lim A Ord A A A = A
7 6 biimpri Ord A A A = A Lim A
8 7 3expia Ord A A A = A Lim A
9 5 8 sylbird Ord A A ¬ x On A = suc x Lim A
10 3 9 sylan A ω A ¬ x On A = suc x Lim A
11 2 10 mt3d A ω A x On A = suc x
12 eleq1 A = suc x A ω suc x ω
13 12 biimpcd A ω A = suc x suc x ω
14 peano2b x ω suc x ω
15 13 14 syl6ibr A ω A = suc x x ω
16 15 ancrd A ω A = suc x x ω A = suc x
17 16 adantld A ω x On A = suc x x ω A = suc x
18 17 reximdv2 A ω x On A = suc x x ω A = suc x
19 18 adantr A ω A x On A = suc x x ω A = suc x
20 11 19 mpd A ω A x ω A = suc x