Metamath Proof Explorer


Theorem nnsum4primesevenALTV

Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of 4 primes. (Contributed by AV, 27-Jul-2020)

Ref Expression
Assertion nnsum4primesevenALTV m Odd 7 < m m GoldbachOdd N 12 N Even f 1 4 N = k = 1 4 f k

Proof

Step Hyp Ref Expression
1 simplll m Odd 7 < m m GoldbachOdd N 12 N Even o GoldbachOdd N = o + 3 m Odd 7 < m m GoldbachOdd
2 8nn 8
3 2 nnzi 8
4 3 a1i N 12 8
5 3z 3
6 5 a1i N 12 3
7 4 6 zaddcld N 12 8 + 3
8 eluzelz N 12 N
9 eluz2 N 12 12 N 12 N
10 8p4e12 8 + 4 = 12
11 10 breq1i 8 + 4 N 12 N
12 1nn0 1 0
13 2nn 2
14 1lt2 1 < 2
15 12 12 13 14 declt 11 < 12
16 8p3e11 8 + 3 = 11
17 15 16 10 3brtr4i 8 + 3 < 8 + 4
18 8re 8
19 18 a1i N 8
20 3re 3
21 20 a1i N 3
22 19 21 readdcld N 8 + 3
23 4re 4
24 23 a1i N 4
25 19 24 readdcld N 8 + 4
26 zre N N
27 ltleletr 8 + 3 8 + 4 N 8 + 3 < 8 + 4 8 + 4 N 8 + 3 N
28 22 25 26 27 syl3anc N 8 + 3 < 8 + 4 8 + 4 N 8 + 3 N
29 17 28 mpani N 8 + 4 N 8 + 3 N
30 11 29 syl5bir N 12 N 8 + 3 N
31 30 imp N 12 N 8 + 3 N
32 31 3adant1 12 N 12 N 8 + 3 N
33 9 32 sylbi N 12 8 + 3 N
34 eluz2 N 8 + 3 8 + 3 N 8 + 3 N
35 7 8 33 34 syl3anbrc N 12 N 8 + 3
36 eluzsub 8 3 N 8 + 3 N 3 8
37 4 6 35 36 syl3anc N 12 N 3 8
38 37 adantr N 12 N Even N 3 8
39 38 ad3antlr m Odd 7 < m m GoldbachOdd N 12 N Even o GoldbachOdd N = o + 3 N 3 8
40 3odd 3 Odd
41 40 a1i N 12 3 Odd
42 41 anim1i N 12 N Even 3 Odd N Even
43 42 adantl m Odd 7 < m m GoldbachOdd N 12 N Even 3 Odd N Even
44 43 ancomd m Odd 7 < m m GoldbachOdd N 12 N Even N Even 3 Odd
45 44 adantr m Odd 7 < m m GoldbachOdd N 12 N Even o GoldbachOdd N Even 3 Odd
46 45 adantr m Odd 7 < m m GoldbachOdd N 12 N Even o GoldbachOdd N = o + 3 N Even 3 Odd
47 emoo N Even 3 Odd N 3 Odd
48 46 47 syl m Odd 7 < m m GoldbachOdd N 12 N Even o GoldbachOdd N = o + 3 N 3 Odd
49 nnsum4primesoddALTV m Odd 7 < m m GoldbachOdd N 3 8 N 3 Odd g 1 3 N 3 = k = 1 3 g k
50 49 imp m Odd 7 < m m GoldbachOdd N 3 8 N 3 Odd g 1 3 N 3 = k = 1 3 g k
51 1 39 48 50 syl12anc m Odd 7 < m m GoldbachOdd N 12 N Even o GoldbachOdd N = o + 3 g 1 3 N 3 = k = 1 3 g k
52 simpr N 12 g : 1 3 g : 1 3
53 4z 4
54 fzonel ¬ 4 1 ..^ 4
55 fzoval 4 1 ..^ 4 = 1 4 1
56 53 55 ax-mp 1 ..^ 4 = 1 4 1
57 4cn 4
58 ax-1cn 1
59 3cn 3
60 3p1e4 3 + 1 = 4
61 subadd2 4 1 3 4 1 = 3 3 + 1 = 4
62 60 61 mpbiri 4 1 3 4 1 = 3
63 57 58 59 62 mp3an 4 1 = 3
64 63 oveq2i 1 4 1 = 1 3
65 56 64 eqtri 1 ..^ 4 = 1 3
66 65 eqcomi 1 3 = 1 ..^ 4
67 66 eleq2i 4 1 3 4 1 ..^ 4
68 54 67 mtbir ¬ 4 1 3
69 53 68 pm3.2i 4 ¬ 4 1 3
70 69 a1i N 12 g : 1 3 4 ¬ 4 1 3
71 3prm 3
72 71 a1i N 12 g : 1 3 3
73 fsnunf g : 1 3 4 ¬ 4 1 3 3 g 4 3 : 1 3 4
74 52 70 72 73 syl3anc N 12 g : 1 3 g 4 3 : 1 3 4
75 fzval3 4 1 4 = 1 ..^ 4 + 1
76 53 75 ax-mp 1 4 = 1 ..^ 4 + 1
77 1z 1
78 1re 1
79 1lt4 1 < 4
80 78 23 79 ltleii 1 4
81 eluz2 4 1 1 4 1 4
82 77 53 80 81 mpbir3an 4 1
83 fzosplitsn 4 1 1 ..^ 4 + 1 = 1 ..^ 4 4
84 82 83 ax-mp 1 ..^ 4 + 1 = 1 ..^ 4 4
85 65 uneq1i 1 ..^ 4 4 = 1 3 4
86 76 84 85 3eqtri 1 4 = 1 3 4
87 86 feq2i g 4 3 : 1 4 g 4 3 : 1 3 4
88 74 87 sylibr N 12 g : 1 3 g 4 3 : 1 4
89 prmex V
90 ovex 1 4 V
91 89 90 pm3.2i V 1 4 V
92 elmapg V 1 4 V g 4 3 1 4 g 4 3 : 1 4
93 91 92 mp1i N 12 g : 1 3 g 4 3 1 4 g 4 3 : 1 4
94 88 93 mpbird N 12 g : 1 3 g 4 3 1 4
95 94 adantr N 12 g : 1 3 N 3 = k = 1 3 g k g 4 3 1 4
96 fveq1 f = g 4 3 f k = g 4 3 k
97 96 sumeq2sdv f = g 4 3 k = 1 4 f k = k = 1 4 g 4 3 k
98 97 eqeq2d f = g 4 3 N = k = 1 4 f k N = k = 1 4 g 4 3 k
99 98 adantl N 12 g : 1 3 N 3 = k = 1 3 g k f = g 4 3 N = k = 1 4 f k N = k = 1 4 g 4 3 k
100 82 a1i N 12 g : 1 3 4 1
101 86 eleq2i k 1 4 k 1 3 4
102 elun k 1 3 4 k 1 3 k 4
103 velsn k 4 k = 4
104 103 orbi2i k 1 3 k 4 k 1 3 k = 4
105 101 102 104 3bitri k 1 4 k 1 3 k = 4
106 elfz2 k 1 3 1 3 k 1 k k 3
107 20 23 pm3.2i 3 4
108 3lt4 3 < 4
109 ltnle 3 4 3 < 4 ¬ 4 3
110 108 109 mpbii 3 4 ¬ 4 3
111 107 110 ax-mp ¬ 4 3
112 breq1 k = 4 k 3 4 3
113 112 eqcoms 4 = k k 3 4 3
114 111 113 mtbiri 4 = k ¬ k 3
115 114 a1i k 4 = k ¬ k 3
116 115 necon2ad k k 3 4 k
117 116 adantld k 1 k k 3 4 k
118 117 3ad2ant3 1 3 k 1 k k 3 4 k
119 118 imp 1 3 k 1 k k 3 4 k
120 106 119 sylbi k 1 3 4 k
121 120 adantr k 1 3 g : 1 3 4 k
122 fvunsn 4 k g 4 3 k = g k
123 121 122 syl k 1 3 g : 1 3 g 4 3 k = g k
124 ffvelrn g : 1 3 k 1 3 g k
125 124 ancoms k 1 3 g : 1 3 g k
126 prmz g k g k
127 125 126 syl k 1 3 g : 1 3 g k
128 127 zcnd k 1 3 g : 1 3 g k
129 123 128 eqeltrd k 1 3 g : 1 3 g 4 3 k
130 129 ex k 1 3 g : 1 3 g 4 3 k
131 130 adantld k 1 3 N 12 g : 1 3 g 4 3 k
132 fveq2 k = 4 g 4 3 k = g 4 3 4
133 53 a1i g : 1 3 4
134 5 a1i g : 1 3 3
135 fdm g : 1 3 dom g = 1 3
136 eleq2 dom g = 1 3 4 dom g 4 1 3
137 68 136 mtbiri dom g = 1 3 ¬ 4 dom g
138 135 137 syl g : 1 3 ¬ 4 dom g
139 fsnunfv 4 3 ¬ 4 dom g g 4 3 4 = 3
140 133 134 138 139 syl3anc g : 1 3 g 4 3 4 = 3
141 140 adantl N 12 g : 1 3 g 4 3 4 = 3
142 132 141 sylan9eq k = 4 N 12 g : 1 3 g 4 3 k = 3
143 142 59 eqeltrdi k = 4 N 12 g : 1 3 g 4 3 k
144 143 ex k = 4 N 12 g : 1 3 g 4 3 k
145 131 144 jaoi k 1 3 k = 4 N 12 g : 1 3 g 4 3 k
146 145 com12 N 12 g : 1 3 k 1 3 k = 4 g 4 3 k
147 105 146 syl5bi N 12 g : 1 3 k 1 4 g 4 3 k
148 147 imp N 12 g : 1 3 k 1 4 g 4 3 k
149 100 148 132 fsumm1 N 12 g : 1 3 k = 1 4 g 4 3 k = k = 1 4 1 g 4 3 k + g 4 3 4
150 149 adantr N 12 g : 1 3 N 3 = k = 1 3 g k k = 1 4 g 4 3 k = k = 1 4 1 g 4 3 k + g 4 3 4
151 63 eqcomi 3 = 4 1
152 151 oveq2i 1 3 = 1 4 1
153 152 a1i N 12 g : 1 3 1 3 = 1 4 1
154 120 adantl N 12 g : 1 3 k 1 3 4 k
155 154 122 syl N 12 g : 1 3 k 1 3 g 4 3 k = g k
156 155 eqcomd N 12 g : 1 3 k 1 3 g k = g 4 3 k
157 153 156 sumeq12dv N 12 g : 1 3 k = 1 3 g k = k = 1 4 1 g 4 3 k
158 157 eqeq2d N 12 g : 1 3 N 3 = k = 1 3 g k N 3 = k = 1 4 1 g 4 3 k
159 158 biimpa N 12 g : 1 3 N 3 = k = 1 3 g k N 3 = k = 1 4 1 g 4 3 k
160 159 eqcomd N 12 g : 1 3 N 3 = k = 1 3 g k k = 1 4 1 g 4 3 k = N 3
161 160 oveq1d N 12 g : 1 3 N 3 = k = 1 3 g k k = 1 4 1 g 4 3 k + g 4 3 4 = N - 3 + g 4 3 4
162 53 a1i N 12 g : 1 3 4
163 5 a1i N 12 g : 1 3 3
164 138 adantl N 12 g : 1 3 ¬ 4 dom g
165 162 163 164 139 syl3anc N 12 g : 1 3 g 4 3 4 = 3
166 165 oveq2d N 12 g : 1 3 N - 3 + g 4 3 4 = N - 3 + 3
167 eluzelcn N 12 N
168 59 a1i N 12 3
169 167 168 npcand N 12 N - 3 + 3 = N
170 169 adantr N 12 g : 1 3 N - 3 + 3 = N
171 166 170 eqtrd N 12 g : 1 3 N - 3 + g 4 3 4 = N
172 171 adantr N 12 g : 1 3 N 3 = k = 1 3 g k N - 3 + g 4 3 4 = N
173 150 161 172 3eqtrrd N 12 g : 1 3 N 3 = k = 1 3 g k N = k = 1 4 g 4 3 k
174 95 99 173 rspcedvd N 12 g : 1 3 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
175 174 ex N 12 g : 1 3 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
176 175 expcom g : 1 3 N 12 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
177 elmapi g 1 3 g : 1 3
178 176 177 syl11 N 12 g 1 3 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
179 178 rexlimdv N 12 g 1 3 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
180 179 adantr N 12 N Even g 1 3 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
181 180 ad3antlr m Odd 7 < m m GoldbachOdd N 12 N Even o GoldbachOdd N = o + 3 g 1 3 N 3 = k = 1 3 g k f 1 4 N = k = 1 4 f k
182 51 181 mpd m Odd 7 < m m GoldbachOdd N 12 N Even o GoldbachOdd N = o + 3 f 1 4 N = k = 1 4 f k
183 evengpoap3 m Odd 7 < m m GoldbachOdd N 12 N Even o GoldbachOdd N = o + 3
184 183 imp m Odd 7 < m m GoldbachOdd N 12 N Even o GoldbachOdd N = o + 3
185 182 184 r19.29a m Odd 7 < m m GoldbachOdd N 12 N Even f 1 4 N = k = 1 4 f k
186 185 ex m Odd 7 < m m GoldbachOdd N 12 N Even f 1 4 N = k = 1 4 f k