Metamath Proof Explorer


Theorem nnunifi

Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Assertion nnunifi S ω S Fin S ω

Proof

Step Hyp Ref Expression
1 unieq S = S =
2 uni0 =
3 peano1 ω
4 2 3 eqeltri ω
5 1 4 eqeltrdi S = S ω
6 5 adantl S ω S Fin S = S ω
7 simpll S ω S Fin S S ω
8 omsson ω On
9 7 8 sstrdi S ω S Fin S S On
10 simplr S ω S Fin S S Fin
11 simpr S ω S Fin S S
12 ordunifi S On S Fin S S S
13 9 10 11 12 syl3anc S ω S Fin S S S
14 7 13 sseldd S ω S Fin S S ω
15 6 14 pm2.61dane S ω S Fin S ω