Metamath Proof Explorer


Theorem nnuzdisj

Description: The first N elements of the set of nonnegative integers are distinct from any later members. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Assertion nnuzdisj 1 N N + 1 =

Proof

Step Hyp Ref Expression
1 fz1ssfz0 1 N 0 N
2 ssrin 1 N 0 N 1 N N + 1 0 N N + 1
3 1 2 ax-mp 1 N N + 1 0 N N + 1
4 nn0disj 0 N N + 1 =
5 sseq0 1 N N + 1 0 N N + 1 0 N N + 1 = 1 N N + 1 =
6 3 4 5 mp2an 1 N N + 1 =