Metamath Proof Explorer


Theorem nocvxmin

Description: Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. Lemma 0 of Alling p. 185. (Contributed by Scott Fenton, 30-Jun-2011)

Ref Expression
Assertion nocvxmin A A No x A y A z No x < s z z < s y z A ∃! w A bday w = bday A

Proof

Step Hyp Ref Expression
1 nobdaymin A No A w A bday w = bday A
2 1 ancoms A A No w A bday w = bday A
3 2 3adant3 A A No x A y A z No x < s z z < s y z A w A bday w = bday A
4 ssel A No w A w No
5 ssel A No t A t No
6 4 5 anim12d A No w A t A w No t No
7 6 imp A No w A t A w No t No
8 7 ad2ant2r A No x A y A z No x < s z z < s y z A w A t A bday w = bday A bday t = bday A w No t No
9 nocvxminlem A No x A y A z No x < s z z < s y z A w A t A bday w = bday A bday t = bday A ¬ w < s t
10 9 imp A No x A y A z No x < s z z < s y z A w A t A bday w = bday A bday t = bday A ¬ w < s t
11 an2anr w A t A bday w = bday A bday t = bday A t A w A bday t = bday A bday w = bday A
12 nocvxminlem A No x A y A z No x < s z z < s y z A t A w A bday t = bday A bday w = bday A ¬ t < s w
13 11 12 biimtrid A No x A y A z No x < s z z < s y z A w A t A bday w = bday A bday t = bday A ¬ t < s w
14 13 imp A No x A y A z No x < s z z < s y z A w A t A bday w = bday A bday t = bday A ¬ t < s w
15 slttrieq2 w No t No w = t ¬ w < s t ¬ t < s w
16 15 biimpar w No t No ¬ w < s t ¬ t < s w w = t
17 8 10 14 16 syl12anc A No x A y A z No x < s z z < s y z A w A t A bday w = bday A bday t = bday A w = t
18 17 exp32 A No x A y A z No x < s z z < s y z A w A t A bday w = bday A bday t = bday A w = t
19 18 ralrimivv A No x A y A z No x < s z z < s y z A w A t A bday w = bday A bday t = bday A w = t
20 19 3adant1 A A No x A y A z No x < s z z < s y z A w A t A bday w = bday A bday t = bday A w = t
21 fveqeq2 w = t bday w = bday A bday t = bday A
22 21 reu4 ∃! w A bday w = bday A w A bday w = bday A w A t A bday w = bday A bday t = bday A w = t
23 3 20 22 sylanbrc A A No x A y A z No x < s z z < s y z A ∃! w A bday w = bday A