Metamath Proof Explorer


Theorem noetainflem2

Description: Lemma for noeta . The restriction of W to the domain of T is T . (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypotheses noetainflem.1 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
noetainflem.2 W = T suc bday A dom T × 2 𝑜
Assertion noetainflem2 B No B V W dom T = T

Proof

Step Hyp Ref Expression
1 noetainflem.1 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
2 noetainflem.2 W = T suc bday A dom T × 2 𝑜
3 2 reseq1i W dom T = T suc bday A dom T × 2 𝑜 dom T
4 resundir T suc bday A dom T × 2 𝑜 dom T = T dom T suc bday A dom T × 2 𝑜 dom T
5 3 4 eqtri W dom T = T dom T suc bday A dom T × 2 𝑜 dom T
6 1 noinfno B No B V T No
7 nofun T No Fun T
8 funrel Fun T Rel T
9 resdm Rel T T dom T = T
10 6 7 8 9 4syl B No B V T dom T = T
11 dmres dom suc bday A dom T × 2 𝑜 dom T = dom T dom suc bday A dom T × 2 𝑜
12 2oex 2 𝑜 V
13 12 snnz 2 𝑜
14 dmxp 2 𝑜 dom suc bday A dom T × 2 𝑜 = suc bday A dom T
15 13 14 ax-mp dom suc bday A dom T × 2 𝑜 = suc bday A dom T
16 15 ineq2i dom T dom suc bday A dom T × 2 𝑜 = dom T suc bday A dom T
17 disjdif dom T suc bday A dom T =
18 16 17 eqtri dom T dom suc bday A dom T × 2 𝑜 =
19 11 18 eqtri dom suc bday A dom T × 2 𝑜 dom T =
20 relres Rel suc bday A dom T × 2 𝑜 dom T
21 reldm0 Rel suc bday A dom T × 2 𝑜 dom T suc bday A dom T × 2 𝑜 dom T = dom suc bday A dom T × 2 𝑜 dom T =
22 20 21 ax-mp suc bday A dom T × 2 𝑜 dom T = dom suc bday A dom T × 2 𝑜 dom T =
23 19 22 mpbir suc bday A dom T × 2 𝑜 dom T =
24 23 a1i B No B V suc bday A dom T × 2 𝑜 dom T =
25 10 24 uneq12d B No B V T dom T suc bday A dom T × 2 𝑜 dom T = T
26 un0 T = T
27 25 26 eqtrdi B No B V T dom T suc bday A dom T × 2 𝑜 dom T = T
28 5 27 eqtrid B No B V W dom T = T