| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noetalem1.1 |
|
| 2 |
|
noetalem1.2 |
|
| 3 |
|
noetalem1.3 |
|
| 4 |
|
noetalem1.4 |
|
| 5 |
2
|
noinfno |
|
| 6 |
5
|
adantl |
|
| 7 |
|
nodmord |
|
| 8 |
6 7
|
syl |
|
| 9 |
1
|
nosupno |
|
| 10 |
9
|
adantr |
|
| 11 |
|
nodmord |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
ordtri2or2 |
|
| 14 |
8 12 13
|
syl2anc |
|
| 15 |
|
ssequn2 |
|
| 16 |
|
ssequn1 |
|
| 17 |
15 16
|
orbi12i |
|
| 18 |
14 17
|
sylib |
|
| 19 |
18
|
3adant3 |
|
| 20 |
|
simplll |
|
| 21 |
|
simpllr |
|
| 22 |
|
simplrr |
|
| 23 |
|
simpr |
|
| 24 |
1 3
|
noetasuplem3 |
|
| 25 |
20 21 22 23 24
|
syl31anc |
|
| 26 |
25
|
ralrimiva |
|
| 27 |
26
|
3adant3 |
|
| 28 |
1 3
|
noetasuplem4 |
|
| 29 |
27 28
|
jca |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simp1l |
|
| 32 |
|
simp1r |
|
| 33 |
|
simp2r |
|
| 34 |
1 3
|
noetasuplem1 |
|
| 35 |
31 32 33 34
|
syl3anc |
|
| 36 |
1 2
|
nosupinfsep |
|
| 37 |
35 36
|
syld3an3 |
|
| 38 |
37
|
adantr |
|
| 39 |
|
simpr |
|
| 40 |
39
|
reseq2d |
|
| 41 |
|
simplll |
|
| 42 |
|
simpllr |
|
| 43 |
|
simplrr |
|
| 44 |
1 3
|
noetasuplem2 |
|
| 45 |
41 42 43 44
|
syl3anc |
|
| 46 |
40 45
|
eqtrd |
|
| 47 |
46
|
breq2d |
|
| 48 |
47
|
ralbidv |
|
| 49 |
46
|
breq1d |
|
| 50 |
49
|
ralbidv |
|
| 51 |
48 50
|
anbi12d |
|
| 52 |
51
|
3adantl3 |
|
| 53 |
38 52
|
bitrd |
|
| 54 |
30 53
|
mpbid |
|
| 55 |
54
|
ex |
|
| 56 |
2 4
|
noetainflem4 |
|
| 57 |
|
simpllr |
|
| 58 |
|
simplrl |
|
| 59 |
|
simplrr |
|
| 60 |
|
simpr |
|
| 61 |
2 4
|
noetainflem3 |
|
| 62 |
57 58 59 60 61
|
syl31anc |
|
| 63 |
62
|
ralrimiva |
|
| 64 |
63
|
3adant3 |
|
| 65 |
56 64
|
jca |
|
| 66 |
65
|
adantr |
|
| 67 |
|
simpl1 |
|
| 68 |
|
simpl2l |
|
| 69 |
|
simpl2r |
|
| 70 |
|
simpl1r |
|
| 71 |
2 4
|
noetainflem1 |
|
| 72 |
70 68 69 71
|
syl3anc |
|
| 73 |
1 2
|
nosupinfsep |
|
| 74 |
67 68 69 72 73
|
syl121anc |
|
| 75 |
|
simpr |
|
| 76 |
75
|
reseq2d |
|
| 77 |
|
simplr |
|
| 78 |
2 4
|
noetainflem2 |
|
| 79 |
77 78
|
syl |
|
| 80 |
76 79
|
eqtrd |
|
| 81 |
80
|
breq2d |
|
| 82 |
81
|
ralbidv |
|
| 83 |
80
|
breq1d |
|
| 84 |
83
|
ralbidv |
|
| 85 |
82 84
|
anbi12d |
|
| 86 |
85
|
3adantl3 |
|
| 87 |
74 86
|
bitrd |
|
| 88 |
66 87
|
mpbid |
|
| 89 |
88
|
ex |
|
| 90 |
55 89
|
orim12d |
|
| 91 |
19 90
|
mpd |
|
| 92 |
91
|
adantr |
|
| 93 |
|
simpll |
|
| 94 |
|
simprl |
|
| 95 |
|
ssun1 |
|
| 96 |
|
imass2 |
|
| 97 |
95 96
|
ax-mp |
|
| 98 |
|
simprr |
|
| 99 |
97 98
|
sstrid |
|
| 100 |
1
|
nosupbday |
|
| 101 |
93 94 99 100
|
syl12anc |
|
| 102 |
101
|
a1d |
|
| 103 |
102
|
ancld |
|
| 104 |
|
df-3an |
|
| 105 |
103 104
|
imbitrrdi |
|
| 106 |
93 9
|
syl |
|
| 107 |
105 106
|
jctild |
|
| 108 |
|
simplr |
|
| 109 |
|
ssun2 |
|
| 110 |
|
imass2 |
|
| 111 |
109 110
|
ax-mp |
|
| 112 |
111 98
|
sstrid |
|
| 113 |
2
|
noinfbday |
|
| 114 |
108 94 112 113
|
syl12anc |
|
| 115 |
114
|
a1d |
|
| 116 |
115
|
ancld |
|
| 117 |
|
df-3an |
|
| 118 |
116 117
|
imbitrrdi |
|
| 119 |
108 5
|
syl |
|
| 120 |
118 119
|
jctild |
|
| 121 |
107 120
|
orim12d |
|
| 122 |
121
|
3adantl3 |
|
| 123 |
92 122
|
mpd |
|