Metamath Proof Explorer


Theorem nonsq

Description: Any integer strictly between two adjacent squares has an irrational square root. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion nonsq A 0 B 0 B 2 < A A < B + 1 2 ¬ A

Proof

Step Hyp Ref Expression
1 nn0z B 0 B
2 1 ad2antlr A 0 B 0 B 2 < A A < B + 1 2 B
3 simprl A 0 B 0 B 2 < A A < B + 1 2 B 2 < A
4 nn0re A 0 A
5 4 ad2antrr A 0 B 0 B 2 < A A < B + 1 2 A
6 5 recnd A 0 B 0 B 2 < A A < B + 1 2 A
7 6 sqsqrtd A 0 B 0 B 2 < A A < B + 1 2 A 2 = A
8 3 7 breqtrrd A 0 B 0 B 2 < A A < B + 1 2 B 2 < A 2
9 nn0re B 0 B
10 9 ad2antlr A 0 B 0 B 2 < A A < B + 1 2 B
11 nn0ge0 A 0 0 A
12 11 ad2antrr A 0 B 0 B 2 < A A < B + 1 2 0 A
13 5 12 resqrtcld A 0 B 0 B 2 < A A < B + 1 2 A
14 nn0ge0 B 0 0 B
15 14 ad2antlr A 0 B 0 B 2 < A A < B + 1 2 0 B
16 5 12 sqrtge0d A 0 B 0 B 2 < A A < B + 1 2 0 A
17 10 13 15 16 lt2sqd A 0 B 0 B 2 < A A < B + 1 2 B < A B 2 < A 2
18 8 17 mpbird A 0 B 0 B 2 < A A < B + 1 2 B < A
19 simprr A 0 B 0 B 2 < A A < B + 1 2 A < B + 1 2
20 7 19 eqbrtrd A 0 B 0 B 2 < A A < B + 1 2 A 2 < B + 1 2
21 peano2re B B + 1
22 10 21 syl A 0 B 0 B 2 < A A < B + 1 2 B + 1
23 peano2nn0 B 0 B + 1 0
24 nn0ge0 B + 1 0 0 B + 1
25 23 24 syl B 0 0 B + 1
26 25 ad2antlr A 0 B 0 B 2 < A A < B + 1 2 0 B + 1
27 13 22 16 26 lt2sqd A 0 B 0 B 2 < A A < B + 1 2 A < B + 1 A 2 < B + 1 2
28 20 27 mpbird A 0 B 0 B 2 < A A < B + 1 2 A < B + 1
29 btwnnz B B < A A < B + 1 ¬ A
30 2 18 28 29 syl3anc A 0 B 0 B 2 < A A < B + 1 2 ¬ A
31 nn0z A 0 A
32 31 ad2antrr A 0 B 0 B 2 < A A < B + 1 2 A
33 zsqrtelqelz A A A
34 33 ex A A A
35 32 34 syl A 0 B 0 B 2 < A A < B + 1 2 A A
36 30 35 mtod A 0 B 0 B 2 < A A < B + 1 2 ¬ A